A Survey on Stateful Data Plane in Software Defined
Networks

Xiaoquan Zhang?®, Lin Cui®*, Kaimin Wei®, Fung Po Tso”, Yangyang Ji?,
Weijia Jia®

% Department of Computer Science, Jinan University, Guangzhou, China
bDepartment of Computer Science, Loughborough University, LE11 3TU, UK
¢State Key Laboratory of Internet of Things for Smart City, FST, University of Macau,
Macau SAR, China

Abstract

Software Defined Networking (SDN), which decouples control plane and data
plane, normally stores states on controllers to provide flexible programmability
and convenient management. However, recent studies have shown that such
configuration may cause frequent and unnecessary interactions between data
plane and controllers in some cases. For example, a DDoS detection installed on
a controller needs to fetch information from data plane periodically, introducing
additional network delay and controller overhead. Thus, stateful data plane is
proposed to offload states and operation logics from controller to data plane.
Stateful data plane allows switches to perform some operations independently,
accelerating packets processing while reducing overhead on both controllers and
networks. However, stateful data plane increases the complexity of network
devices and imposes many new challenges to the management and schedule
of SDN enabled networks. This paper conducts a comprehensive survey on
the latest research works and provides insights into stateful data plane. Both
stateful data plane platforms and compilers are extensively summarized and
analyzed, as well as explicit design of applications based on them. Afterwards,
we dwell on the fundamental technologies and research challenges, including

implementation considerations of stateful data plane. Finally, we conclude this

*Corresponding author
Email address: tcuilin@jnu.edu.cn (Lin Cui)

Preprint submitted to Computer Networks September 14, 2021

10

15

20

25

survey paper with some future works and discuss open research issues.
Keywords: SDN, stateful data plane, data plane programmability, P4,
OpenState

1. Introduction

Software Defined Networking (SDN) is an emerging network architecture
that provides unprecedented network programmability by decoupling the con-
trol plane and data plane. OpenFlow [I], the first real implementation of the
SDN paradigm, introduces a “match-action” paradigm to the SDN data plane
wherein forwarding is simple but efficient. SDN controller, the control plane,
can obtain global information of the whole network. This provides a conve-
nient means for operators to adapt to the network dynamism and to extend
new features by redefining control loops on the control plane. Clearly, in legacy
SDN architecture, the controller manages network states while the data plane
is only responsible for forwarding packets, which is also known as stateless data
plane [2].

With an increasing adoption, it is soon realized that frequent interactions
between data plane and control plane bring additional delay and overhead to the
network (e.g., the overhead of periodic queries of counters produced by a DDoS
detection [3]). On the other hand, experiments show that, even if preserving
some network states and performing some simple operations, the data plane can
still guarantee high-speed packet forwarding [4]. Thus, functions that require
frequent interactions between controllers and data plane for state management
can be offloaded to data plane to reduce overhead and increase efficiency. This
novel architecture is called stateful data plane.

In contrast to the simple “match-action” paradigm of OpenFlow, stateful
data plane proposes a new “match-state-action” paradigm that can both keep
and manage states in the data plane [5]. It imposes higher requirements on
network devices, such as requiring complex hardware design to support stateful

operations (e.g., stateful elements are required in process pipelines [6]). Thus,

30

35

40

45

50

55

network switches are no longer “dumb” but more “intelligent”. Then, network
applications can be deployed in stateful data plane and executed without explicit
involvement of controllers [7]. For example, by eliminating delay to controllers,
network monitoring implemented on stateful data plane can obtain better accu-
racy and efficiency [§]. However, managing states in data plane is hard because
it is distributed [9]. Each switch keeps its own states, which may be quite dis-
tinct from others, then state inconsistency problems may arise. On the other
hand, comparing with controller, it is difficult to realize too complex logic in
data plane due to limitations of network devices (e.g., difficult to implement
multiplication/division while promising per-packet process speed [10]). Hence,

stateful data plane also faces some challenges. For example:

1. Capabilities of network devices limit the implementation of complex state-
ful applications [I1]. For example, applications only obtain limited re-
sources of switches (e.g., memory).

2. A common interface for stateful data plane is still missing, making it a
great challenge when implementing and deploying stateful application. For
example, methods to locate state positions are varied in different hardware
implementations [12].

3. Switch hardware structural design still have some issues when implement-
ing stateful data plane, for example, race condition problem in pipeline

process [6].

In fact, stateful data plane has received increasing attentions from research
community. Shaghaghi et al. [13] analyzed three main types of vulnerabili-
ties in stateful data plane, namely: unbounded flow state memory allocation,
lack of authentication mechanisms and a central state management. They also
gave some basic recommendations to cope with vulnerabilities of stateful data
plane, including state consistency check and secure in-band signaling. Dargahi
et al. [14] proposed schemes for stateful data plane and analyzed the vulnerabili-
ties of existing stateful data plane proposals for security issues. They concluded

that the possible vulnerabilities should be carefully taken into consideration

60

65

70

75

80

in designs of current and future proposals for stateful data planes. Bifulco et
al. [I5] proposed a simple state classification, including packet state and global
state, to define the data plane as stateful or stateless according to whether the
global state is admitted to write. They also argued that finding an expressive
yet simple model to handle state operations in the data plane is important.
Kaljic et al. [I6] pointed out that the future research direction of stateful data
plane is the development of fully synchronized stateful data plane supporting
state monitoring and management.

In this paper, we present a more comprehensive survey on stateful data plane,
ranging from fundamental techniques of stateful data plane to existing platforms
and applications. The comparison with other works is shown in Table [2| The
taxonomy of stateful data plane discussed in this paper is shown in Figure

The main contributions of this paper are as follows:

1. An extensive review of schemes on stateful data plane, and summary
emerging stateful applications classified by distinct state machine.

2. An explicit definition of stateful data plane, and detailed exploration of
basic components of stateful data plane to show flexibility and programma-
bility.

3. A comprehensive analysis of schedule and optimization technologies and
implementation considerations for stateful data plane, as well as future

research directions of stateful data plane.

The remainder of this paper is organized as follows: Section [2| briefly pro-
vides an overview of stateless and stateful data plane. Section [3] lists existing
platforms and applications and summarizes their features. Section [4] introduces
basic components of stateful data plane. Section [5|summarizes schedule and op-
timization technologies and section [6] discusses implementation considerations
for stateful data plane. Finally, Section [7] summarizes several issues for future

research directions on stateful data plane and Section [§] concludes this paper.

Applications

§3.3 Explicit designs
In-band Network)

(SPIDER)(StaticNAT)(HULA)(HashPipe)(Dapper)(Telemetry

Programming & optimizing ﬁ

Core components and technologies

Intra-switch consistency)

(Perpacketstate) (
— pac —
§4 1 State classification Per-flow state Consistenc - 3
(Inter-switch consistency)

Global state
(§5.2 Migration)
. Finite State
§4.2.2 State machine (§5.3 Composition optimization)
Counter-based State

classification

§5.4 Placement

(§4.3 State operation)

§3.1 Planforms §3.2 Compilers
(Openstate)(OPP)(FAST)(SNAP)(SDPA FIowBIaze) .

Realizing & supporting ﬁ

Implementation & hardware

Loglc placement

(Computation
§6.1 Available implementation §6.2 Hardware limitations
(Memory capacity

Figure 1: Condensed overview of this survey on stateful data plane in SDN

Table 1: Main acronyms

SDN

DDoS

TCAM

BRAM

SRAM

FPGA

FSM

EFSM

DAG

BMV2

ALU

NAT

INT

DSL

ASIC

DPDK

RDMA

NIC

Software Defined Networking
Distributed Denial of Service
Ternary Content Addressable Memory
Block Random Access Memory
Static Random Access Memory
Field Programmable Gate Array
Finite State Machine
Extended Finite State Machine
Directed Acyclic Graph
Behavior Model v2
Arithmetic and Logic Unit
Network Address Translation
In-band Network Telemetry
Domain Specific Language
Application Specific Integrated Circuit
Data Plane Development Kit
Remote Direct Memory Access

Network Interface Card

SIsATeuR aAIsuUayaIduIo))

suoryeoridde pue

auerd eyep myereIs NS

i Iom IO
SowroyDs SuryeIoqe[H Jo AoaIns aatsuoysrduio))
suorjeoridde oN ‘sowoyos oueld eyep N(IS Uur
JuowRSeURW 99e1S 6102 91] Te 10 otley]
MoF donpojur Ajdwrg AN[Iqemure18or g
suorjeoridde oN aue[J ere(
JuowRSRURW 998G 8T0¢C [CT] Te 90 oompuig
"sowroyos 981 Adurg o[qewIeIS0I] ’
suorjeoridde oN ‘sowoyos oueld ejep)
810¢ [Tl 1e 10 wSeyseyg
MoJ donporaqur Adurg NS Jo Ajumoag
suorjeoridde pue seweyds oue[d ejep [njojels)
4 . L102 71l 12 30 yesteq
[eo1dA) [eroAds SUONPOIIUT NS Jo £A31moeg
SUOTYRJIUUI] SIsAJeue So130[0Uy9) suorjeoridde pue Ieak
SND0J UTRN SYIOA
aIeMPIeY JO JUIUO)) | [RJUSWRPUN] JO JUIUO) SOUIAYDS JO JUIIUO)) ' paysiqndg

staded Aeains 1sjo yyim uostredwo)) :g 9[qr],

85

90

95

100

105

110

2. Overview of Stateless and Stateful Data Plane

In this section, we brie y outline the concepts of stateless data plane and
stateful data plane, followed by a load balancer example to show their di er-

ences. Several commonly used acronyms in this paper are listed in Takfl¢ 1.

2.1. Stateless Data Plane

The most prominent feature of traditional SDN is that the network control
and states (i.e., the control plane) are centralized on one or more controllers
for exible network management. Switches send any required information to
controller via PACKET _IN messages. Upon receiving those messages, controller
updates network states. Such updates may trigger actions such as modifying or
installing new rules to the ow tables in switches. In comparison, data plane
in switches only carries out simple \match-action" operations according to ow
table without conducting any state management. This is referred as stateless
data plane.

The development of traditional SDN [I7][18][19][20] is becoming increasingly
more mature as evidenced by many proposed and developed SDN frameworks
such as NOX [21], POX [22], OpenDayLight [23], Floodlight [24] and Bea-
con [25]. The original OpenFlow versions adopt a simple and e cient \match-
action" abstraction in data plane. This abstraction uses xed match elds and
corresponding actions to e ectively forward packets. Network devices of state-
less data plane are usually \dumb" devices.

However, stateless data plane, albeit simple and fast, can inevitably su er
from additional network delay and overhead, specially for applications that re-
quire frequent read/write on states, e.g., heavy hitter [26], where it needs to
stop and wait for decisions from the controller. There are some attempts to
x this problem. For example, Han et al. [27] proposed a method that allows
switches to indirectly participate in the management of states without storing
states directly. To avoid the controller being a bottleneck, an open connection

table is designed to manage states information interaction between controller

115

120

125

130

135

140

and data plane. However, due to inevitable network delay, controller may still

fail to update states in time, making decisions based on the out-of-date states.

2.2. Stateful Data Plane

Unlike stateless data plane, stateful data plane allows network switches to
directly operate their own states with few or no intervention of controller. In
this paradigm, a controller o oads two main components to data plane: state
management and processing logic. With this, some network functions can be
partially or even fully implemented in data plane. In addition, to correctly model
these network functions, state machines (see details in Section 4) are introduced
for analysis in stateful data plane. Hence, we de ne three key characteristics of

stateful data plane:

1. States can be stored in data plane . This reduces data transmitted
to controllers over the network. These states are meaningful for functions
deployed on switches. For example, switches in HULA [28] save state
information that indicates the next best hop for every entering ow.

2. Data plane can update its own saved states . For example, increasing
a counter value when a given condition happens during packet processing.
Thus, the decision-making policy of switches can be changed accordingly,
which will a ect the processing of subsequent received packets. This fea-
ture requires switches to o er certain capability of various state operations.

3. Data plane is programmable . Data plane has limited programmability

and is able to change operation logics when needed.

It is worth noting that there exist some works that only keep states on
switches without providing state operations on the data plane. Such architec-
tures are not classi ed as stateful data plane in this paper. For example, Nife et
al. [29] provided the ow state-aware using tables to keep track of each specic
ow. However, it only allows the controller to maintain states rather than the

switch itself.

(a) Stateless

(b) Stateful

Figure 2: Load balancer in stateless and stateful data plane

10

145

150

155

160

165

170

2.3. Stateless vs Stateful

Table 3 compares main features and properties of both stateless and stateful
data plane. In addition to di erences mentioned above, stateful data plane is
distinct from stateless data plane in some aspects. The controller can provide
global decide-making optimization to network. However, applications installing
in stateless data plane requires the controller frequent involvement, which is un-
desirable since controller's design is not involved real-time packet processing but
is supposed to generate rules. Moreover, overhead and latency of communica-
tion between switch and controller increases with the increase of the number of
switches in stateless data plane, since more requests the controller needs to han-
dle. Conversely, o oading simple logic in stateful data plane, the controller can
preserve resources for more essential operations. Hence, due to logic handling
in data plane, the controller would not be e ected by the number of switches.

Besides completely installing in data plane, applications in stateful data
plane also have an alternative option, which is installing in the controller and
switches. Netcache [30] proposed a a novel key-value store architecture for cloud
services. In netcache, simple logic is installed in data plane to improve packet
forwarding and processing performance, and the controller is responsible for
updating cache in switches. The combination of the controller and data plane
allows programmers to explore various and even more meaningful applications.

To show their di erences clearly, Figure 2(a) and Figure 2(b) illustrate imple-
mentation of a load balancer with stateless and stateful data plane respectively.
For the stateless implementation in Figure 2(a), when a nhew connection arrives,
the switch will send request to controller (step 2). The controller will make de-
cision according to states it maintains and install new rules in the switch (step
3 and 4). Finally, the switch forwards packets to the assigned server (step 6).
Unlike stateless implementation, the processing of stateful data plane is per-
formed without involvement of the controller, as shown in Figure 2(b). Upon
receiving a new connection, the switch (load balancer) records information ex-
tracted from the packet header and assigns a server based on pre-de ned logics,

e.g., polling algorithm (step 2). Then, it updates its local states (step 3) and

11

175

180

185

190

195

200

forwards packets to the assigned server (step 4).

In deed, the legacy SDN architecture brings su cient computing resources
on the centralized controller for network management, and simple but e ective
abstraction on stateless data plane for rapid forwarding. However, the lack of
independence causes that the data plane needs to communicate with controller
frequently, which leads to overhead and potential bottleneck in the controller.
By o0 oading state operations and logics to the data plane, stateful data plane
greatly reduces response time and communication overhead between controller
and data plane. For example, a port knocking application (Figure 8) in the data
plane can enormously avoid the network latency between controller and data
plane [31].

Stateful data plane also has some limitations. For example,

1. Some operations can not be easily implemented in stateful data
plane. One typical example is applications that require modifying packet
payload, e.g., intrusion detection application that needs to analyze infor-
mation in payload [32].

2. Complicated state recovery mechanism . States stored on switches
need to be restored when the switch fails. However, in order to ensure con-
sistency and e ciency, existing state synchronisation/migration methods
have to make tradeo between complexity of mechanisms and the time
interval of recovery [12][33].

3. Complicated application design . Since stateful data planes have more
severe memory and computing constraints than stateless data planes, pro-
grammers sometimes need to consider these hardware limits and made
some tradeo on performance when designing applications on stateful data

plane [10].

3. Existing Platforms and Applications for Stateful Data Plane

In this section, we survey various existing platforms and compilers for state-

ful data plane, as well as several representative applications based on stateful

12

(panjonul aq ybBiw 19]j01U0I) SBYIUMS Ul Ajurep

1ajjonuod ul AluQ

juswaoe|d uoneolddy

[€] uoneoidde |njbuiuesw alow
sayew Youms pue Ja[josuod Buiuiquod

J3]j0ju0d ul suonedijdde snolea uoddng

Alslanip uoneolddy

[T] 4o1j10U02 BY} JO
peayJano ayl 193 B 10U SB0P SaYdIMS JO Jaquinu ay

'19]|0J1UOD 10} peaylsaA0 alow sueaw SaydliMs al0N

S8U2IMS JO Jaquinu
ay) Jo 198

[92] suoneiado asimiq pue
suoneiado reonewsayrew ajdwis uoddns Ajuo yaiym
SayY21IMS 10} uoneindwod [eulalxa 18 0 ued J9||0,u0)

‘uoneindwod eanewsayrew xa|dwod pue
uoneziwndo Bupjew-uolsioap [eqolb sapinoid 19jj01u0)

Jamod Bunndwo)

uonesado 2160] urenas uswWajdwl UBd SaYdIMS ‘,UewsS)

2160| Jan0 sayel Jajjonuod ‘[Te] .qunay

S92IA3P MIoMIBN

19]j0.1u0d Aq paltabbiy ag 01 palinbal jou op sarepdn |njarelS

[enuassa pue juanbai

uoedIUNWWOod
19]]0JU0D-YoUMS

S9]e]S UMO S)I Safeurw pue Salols YolIms yoe J9]|0u02 ay) Agq pabeuew pue palols Ajjenua Juswabeuew
I p yaoums yoeg I yr Aq p pue p Il 0 pue abeIoIs areIS
aue|d erep |njarels aue(d elep ssojo1RIS uonduosaq

aue|d eleq |njalelS pue aued ereq ssajalels ¢ ajgel

13

205

210

Figure 3: Tables used in OpenState, OPP, FAST, SDPA and FlowBlaze architectures. Each
table is represented as a rectangle containing the table name and corresponding table columns

enclosed by smaller rounded rectangles. Dotted lines represent state transitions.

data plane.

3.1. Stateful Data Plane Platforms

Table 4 compares existing platforms of stateful data plane from six aspects:
state machine implementation, implementing software switch, implementing

hardware, hardware storage, global state in registers and controller involvement.

3.1.1. OpenState
OpenState [31] extends OpenFlow to con gure stateful data plane, and has

been implemented as an OpenFlow 1.3 experimenter extension. OpenState pro-

14

Z'Z’€ UoIaS Ul padnpoaul ONINOQ Yum pajidwod s rezuag

NVHS [TT] aremprey a|qes
umoudqun # # V/N lezueg
NVOL 9 109dg uonoe-yore
12151609y
arepdn ayess [ov] 3nNs [ov] dax/ddge
SddA8'#T [NVOL a|gel INSH3 aze|gmol
Arelixne 7 uoeniuy VOd41eN [s¥] youmsw
NvHdg
1815169y [v¥] youms
umouNun Juawaoe|d sareis # V/IN [ev] aadx dVNS
NVO pauoddns s ASVISN
AV
sdgo0T~S'0 [S] uoneziemur 44 # AYOL [e¥] predlaNO | [Tt] youmsa usdo [s] a4 vdas
abeiols pue uoneindwod NVHS
umouNun # V/N [T¥] youmsa uado a|0el NSH3 1SW4
Areyjuawe|ddns NVOL
1a1s16ay
arepdn ayels [ov] anNs [6€] youms
sddinog~0T [AV 8|0el INSH3 ddo
Areljixne % uoneniuj vOddI1eN €140 abdo
ANVOL
arepdn ayess NV [sell.el [9€] yonmsyos
umouun # a|qer WS43 areisuado
Areijixne % uoneniu NVOL paseq-vod4 arelsuado
si1a1sibal ul abeiols alempiey UolIMS aIemijos uonejuswsa|dwi
indybnouy L JUSWAAJOAUI J3]|0NU0D wuone|d
alels [eqo|o alempireH Bunuswajdwi| Bunuawajdwi aulyoew ae1s

wiofield aue|d ereq [NJ1eIS Jo Alewwns i ajgel

15

ydeus a1pAoy paroalag :ova

1215169 aze|gmo obenbuej
15109y 1gMo|4 AMddd NS43 5 pads-urewoq X
i [TT] wo [TT] rezue obenbue|
i 1T 1\ VIN TT)! d ovd annesadwi axil-0 ONINOd
[2G] vOdd <-vd
[ts] vOddrd [8¥] S30SId abenbue)
1215169
les] ssibay [0G] Lndp [Lv] 2ANE ovd 9 19ads-urewog rd
6] LNY
UolMS aJemyos uoirejuswsa|dwii
uonelado 21WONY sauowsw |njale1s alempiey Bunuswajdw) Bunuawsidw| aUIDRIL 1E1S adAl abenbue Japdwo)

Ja|Idwo) aue|d ereQ |Narels Jo Arewwns G ajgel

16

215

220

225

230

235

240

vides the ability to con gure custom states inside switches and program how
states should be evolved. OpenState relies on a simplied EFSM abstraction
(Extended Finite State Machines), named Mealy Machine [35]. The EFSM is
modeled as a 4-tuple §;1;0;T), plus a default state Sy. S refers a nite set
of states. | is a nite set of input symbols (events). O is a nite set of output
symbols (actions). T : S 1! S O is a transition function which maps
< state;event > pairs into < state;action > pairs. OpenState simply provides
programmers with di erent header elds to access to the state table: \lookup-
scope" is used to access a state table for lookup operations, and \update-scope"
is used to update the state table. The state table stores states of ows iden-
tied by a unique key composed of a subset of the information stored in the
packet header (e.g., an IP address, a source/destination MAC pair, a 5-tuple
ow identi er). EFSM table is used to implement state machines, which deter-
mines match keys and actions. Packets would trigger corresponding actions and
state modi cations after going through the EFSM table.

OpenState is one of early proposals for stateful data plane. It proposes prim-
itives for switches to handle ow states and provides high programmability for
users to express their network requirements [54]. However, since OpenState only
provides a simple model that supports limited actions, it lacks expressiveness

and can only abstract limited state machine [55].

3.1.2. OPP

OPP (Open Packet Processor) [4] proposes a programming abstraction which
retains the platform independent features of the original \match-action" ab-
straction while bringing programmaubility of stateful packet processing tasks into
network switches. The stateful process of OPP consists of four stages. In stage
1, a Flow Identi cation Key (FK) is extracted from packets and it identi es the
entity to which a state may be assigned. The key is used to extract ow context
including a state label s and an array of registersR = frg;ry;:::;r¢ 19. In stage
2, Condition Block is in charge of implementing the enabling functions speci ed

by the EFSM abstraction according to compute conditions. Global registers

17

245

250

255

260

265

270

of a state machine. After matching in this table, output has three types: setting
next state, executing actions, and updating registers. In state 4, Update Logic
Block implements an array of Arithmetic and Logic Units (ALUs), which allows
programmers to update the value of the registers (arrayR or array G).

OPP is an improvement of OpenState, providing more explicit executing
actions and adding registers to expand programmability. In addition, OPP en-
riches EFSM formal notation, which permits programmers to implement more
meaningful applications. However, some limitations of OPP architecture ex-
ist [4]. Firstly, OPP does not support some asynchronous events that trigger
translation of states, e.g., timer's expiration. Secondly, OPP only deploys the
ALU processing in the Update Logic Block for a cleaner abstraction and a sim-
pler implementation, which means that it only supports simple calculations.
Bianchi et al. [4] also discussed the hardware feasibility and devised a specic

hardware for OPP architecture based on FPGA prototype.

3.1.3. FAST

FAST (Flow-level State Transitions) [26] is a new switch abstraction that
allows operators to program their state machines for a variety of applications
in data plane. FAST includes two key designs: control plane and data plane.
The control plane compiles state machines for speci ed switch using high-level
abstraction, and data plane is responsible for forwarding packets according to
the state machines compiled by control plane. In the data plane, the implemen-
tation of state machines mainly bases on four tables: State table, State machine
Iter, State transition table and Action table. The State machine lter is used
to lter dierent types of trac. The State table stores the current state for
each ow. It is worth pointing out that FAST decouples State transition table
and Action table from the EFSM table, which o ers more exible programma-

bility. The State transition table submits a received packet to Action table

18

275

280

285

290

295

based on matched conditions. The Action table will execute speci ed actions,
and the State table will update corresponding states based on the \next state"
in state transition table (see Figure 3). In FAST, controller is used to miti-
gate limitations of data plane. Due to insu cient computational complexity in
data plane, FAST allows switches to upload unsupported computations (e.g.,
average) without guaranteeing the time interval of interaction with controller.

In addition, controller can save states that are rarely used, which decreases

memory consumption on switches.

3.1.4. SNAP

SNAP (Stateful Network-Wide Abstractions) [9] o ers a high-level language
that provides a simple \centralized" stateful programming model to achieve
a stateful network-wide abstraction. In SNAP, a subset of switches is chosen
for array placement, and other switches can still play a role in routing ows
through state variables. By accessing and modifying the state stored in corre-
sponding switches, a broad range of applications from rewall to ne-grained
tra c monitoring can be implemented. Two key details in SNAP program
are state placement and tra c routing. To support stateful packet processing,
SNAP uses intermediate representation which is called extended forwarding de-
cision diagram (xFDD) [43]. The SNAP program will be converted to xFDD,
which determines state variables and processing operations for each packet be-
fore forwarding the packet to corresponding output port. In order to enforce
state placement and tra c routing, the compiler uses a mixed-integer linear
program (MILP) to decide state placement and routing.

In SNAP program, states storage is not distributed on each switch, but cen-
tralized on one switch. The main reason is that it is hard to simultaneously
provide strong consistency when updating state variables. Although this cen-
tralized storage method saves a lot of storage spaces and reduces the complexity
of network, it lacks reliability. Especially, when the switch storing states fails,

these states are unrecoverable.

19

300

305

310

315

320

325

3.1.5. SDPA

SDPA (Stateful Data Plane Architecture) [5] is a platform that enables ef-
fective programming and stateful processing in data plane. SDPA proposes
a \match-state-action” paradigm for the data plane. More speci cally, a co-
processing unit in switches named Forwarding Processor (FP) is designed to
manage states. The FP includes three tables: state table (ST), state transla-
tion table (STT) and action table (AT). ST is used to store states. Applications
deployed on controller can send messages to FP for dynamically initializing ST
if stateful processing is needed. STT is designed to support stateful processing,
which is con gured by controller only once during initialization. STT contains
three domains: state, event and next state. The state domain matches current
states; the event domain makes a comparison with packet's ag or states to
trigger state transition; and the next state domain can be a speci ed state or
mathematical/logical operations (e.g., state + 1). AT is used to record actions
for incoming packets under di erent ows and it may transit the corresponding
state in the ST.

SDPA proposes a more complicated but e ective architecture for stateful
processing. It supports processing of di erent applications by preserving and
separating state information of di erent applications, which facilitates the re-
quirement of isolation between di erent applications for programmers. States
on an overloaded switch can be migrated with SDPA. Two types of migrations
are considered in SDPA: (1) migration from one switch to another, (2) migra-
tion from controller to the switches, since SDPA allows applications to initiate

in state table.

3.1.6. FlowBlaze

FlowBlaze [6] is an abstraction for designing stateful packet processing func-
tions implemented on NetFPGA SmartNIC [40]. It achieves high performance
and low latency while consumes very few power on newer FPGA models. In
FlowBlaze, an Extended Finite State Machine (EFSM) [56] is introduced to

build functions speci ed by users. The FlowBlaze machine model consists of

20

330

335

340

345

350

355

stateless element and stateful element. Stateless element is the same as a
\match-action" table. And stateful element is split into Flow Context Table,
EFSM table and update function. The Flow Context Table is used to save states
of ows. The EFSM table is used to implement functions abstracted by EFSM.
And the update function is responsible for executing the state update. Besides,
a small stash memory [6] is used to handle hash collision when too much entries
inserting into hash table, which provides scalability for the Flow Context Table.
FlowBlaze solves the race condition problem by a simple scheduler scheme to
guarantee the consistency of ow states.

FlowBlaze is a novel abstraction and mature stateful data plane platform
implemented on hardware. It has been used to provide better performance to
network functions in some projects, e.g., VPP functions [57]. It also discusses
and solves several typical problems in stateful data plane, e.g., consistency and
large amounts of ows. Although some issues are not resolved completely, Flow-

Blaze o ers many inspirations for future designs of stateful data plane platform.

3.2. Stateful Data Plane Compilers

In this section, we list some existing compilers for stateful data plane. Table 5
compares existing compilers, from six aspects: language type, state machine im-
plementation, implementing software switch, implementing hardware, stateful

memories and atomic operation.

3.21. P4

P4 [58] is a high-level language for programming protocol-independent packet
processors, which enables exible recon gurability in the eld. In P4, program-
mers can not only devise header elds, but also de ne the packet parsing and
processing in the elds. The processing of packets in P4 has four major phases:
(1) Parsing of packet, a packet must be translated into a representation that
can be processed in the next phase when it enters switch. In the meanwhile, the
parser recognizes elds from header and extracts them for processing in the next

stage but does not distinguish what protocol it is. (2) Apply the \match-action”

21

360

365

370

375

380

385

table to ingress, the \match-action" table is divided into ingress and egress, both
may modify packet headers. Ingress \match+action" may determine the egress
port. Based on ingress processing, the packet may be forwarded, replicated,
dropped, etc. (3) Apply the \match-action” table to the egress, which performs
per-instance modi cations to the packet headers, e.g., for multicast copies. (4)
Deparsing, packets undergo decomposition as well as processing. After pro-
cessing, the packet should be deparsed based on its current states before nal
forwarding.

Exploiting stateful applications in P4 is convenient. First, they are no longer
limited by the xed match elds (e.g., OpenFlow 1.3.4 supports 40 matching
elds) as P4 enables exible de nition of headers. Second, P4 allows program-
mers to use metadata to transmit states in dierent stages, which provides
great convenience for delivering state. Third, P4 version 1.1 [53] introduces a
special stateful memory called registers. Registers can be de ned as a global
state accessed by multiple ows, and they can also be used to implement small

dictionaries, or a hash table as sparse dictionaries.

3.2.2. DOMINO

DOMINO [11] is a data plane programming language which aims to achieve
line-rate programmability for stateful algorithms. In order to simplify some
sophisticated data plane algorithms, DOMINO introduces a new packet tran-
sition: a sequential packet-processing code block. A code block is atomic and
isolated from other code blocks. It means that a packet only needs to consider its
own processing without interference from the processing of other packets. Thus,
DOMINO guarantees that packet process runs at line rate. DOMINO also in-
troduces a machine model, named Banzai, for programmable line-rate switch.
There are two constrains in the Banzai model: (1) di erent packet-processing
units can not share states; (2) any switch state modi cation is required to be
visible to the next packet entering the switch. These two constrains ensure
that code block is atomic. Thus, atom is introduced for storing and modifying

states. It is a vector of processing unit used to handle stateful packet processing

22

390

395

400

405

410

415

in Banzai, and each pipeline stage contains a vector cdtom.

DOMINO guarantees state consistency and performance at the cost of lim-
ited exibility. The atomic operation is unable to conduct tasks that can
not complete within the limited time budget of a single pipeline's stage [59].
DOMINO tries to explore a once-and-for-all way to cater to vendors' closed plat-
form while provides an open programmable architecture, which compromises its

exibility [60].

3.2.3. XL

XL (XFSM Language) [61] is developed for the description of per- ow state-
ful network functions. It is suitable for FlowBlaze [6] to describe stateful and
stateless network functions in the EFSM table. Since many platforms can ex-
ecute network functions abstracted as EFSM, XL becomes a general compiler
using EFSM abstraction, providing platform independent portable code. Fur-
thermore, XL provides a compiler xlc to compile user's code into a JSON rep-
resentation, which can be loaded into hardware or software (e.g., DPDK).

Compared with P4 and DOMINO using DAG as their abstractions, XL
enriches the EFSM abstraction programming for hardware platforms that relies
on the EFSM table, while it can also support programming in software. On the
other hand, XL also provides a convenient way to compose multiple network

functions for reducing the complexity of application design.

3.3. Applications Based on Stateful Data Plane
In this section, ve explicit applications are introduced to show the pro-
grammability of stateful data plane. Due to page limitations, more other appli-

cations can be found in Table 6.

3.3.1. SPIDER

SPIDER [2] implements a link failure recovery that o ers programmable
detection and link reroute. It designs a packet processing pipeline implemented
on OpensState. By sending probe packets to adjacent switches, SPIDER provides

a recovery mechanism that has short delay of recovery and failure detection.

23

Figure 4: A failover example [2]. Packets attaching to tag=0 are forwarded along blue-solid
lines to the original path, otherwise, packets attaching to tag=F4 are forwarded along red-

dotted lines to the detour path.

24

ploysaiyy
uonoale
[22][92][s2] 31 SPa9IXa 181unod 8yl aduo 19[|01uU0d MO AJoAD 10} JBJUNOD B dARS NS43 ' o P
Jany-AnesH
0] Jawunod Alana speojdn youms ayl 4
] ploysaiyl syl yum aueld eyep ul POO|4-NAS 10818p uonoalep
S panes s1axoed NAS JO J181unod ay) aredwo)d 01 MO AJSAS 10} J21UN0J B Urerew SaYIIMS WS43 PoO0 -NAS
[eubis NI4 paAnladal uodn J13[j01u0d aue|d eyep ul Mo Jo azis ay) Bunosg|o9 Jo
[v21le2lloe] INSH3 J21UN0J 8ZIS MO|H
93U} O] puUas pue azIS MO JO I191uUnod e daay uona|dwod ay) Jaye 19||01u0d 3y} 01 Woday
ploysaiyy
[z2] ploysaiy: Buipaaodxa uondauu0d
[9zll6lls] SPaaoxa 1l JI 19]|0/1U0D 0] PUSS pue 92IN0S INS43 |uonoalep Japealds-iadng
dD1 YlMm 82In0S U0 Wolj SMO 19318
® JO Jaquinu UOoMJ3auu0d JO SI31UN0d alenae)d
[t21loz1l69] 1oene e se paubis aq syoene [enuajod 109)8p 01 9 B
NSH3 uonoslep sodad
[8ol[z9lloz] | pinom 11 ‘pjoysalyl ayl Spaadxa J1aJunod ayl J| |punoibxoeq ayl Jo Sainjes) ayl JUNOI SaYdIIMS
ploySalyl 8yl paadxa Sassadoe sl SJUaI|D 10} SasSaIppe d| panjosal
[q] NEE uonoalep SNA
JI Jasn snoidlew e aq 03 pabpnl siual ayl ayl |e Jo xoes daay 0] Ja1unod e ubissy
nwuad
"pJeasip asimuaylo ‘1apio ul suod 9 19ads Jo
[¥Sllv] ay urelqo ued Y Jayleym Bujuiwislep mo NS4 Buoouy Hod
$9119s e ssed ued U09BUUOI SIY] JI BUIWIBIBd
AJana 1oy aulyoew a1els e urejurew Saydlms
pJeosip asIMIaUl0 ‘sassalppe uolreunsap MO preoqino Aue 1NoylM SUOII3ULOD
[99][6] INSH s|lemal |nyareIS
pue 82inos Jo Alfebs| ayl sulwislaq dD1 punoqui paidiosun sid)| Youms
MO MaU e Jo 19xoed 1s1 ay) Buiniedal Mo Alana
[£] NS4 1VN
USYM uIn} Ul Sassalppe [eulaiul 91edo|y 10} YoUMS N 3yl Ul auiyoew arels e daa))
s1axoed panledal Ag payoene Syl
[sollv9llsz] NS Buioueeq peo
uonewJiolul yul ayl Aq Jo ‘Buijjod Ag a|dinw yum 2 e MloMmiau aleys Saydlms
pareAinoe
snjels syl
[eallzalle] SI yred 81noJap 8yl pue UMOP SI YOIMS WS4 13n0|rey SuI
Jojuow pue yred dnyoeq anes saydums
aok(pe s 1ey) a2110U PINOM SBYIMS
1oy uonisuel] alels uonnjos aue|d elep |njeIeIS adAL uoneolddy
SauIyoe\ a1e1S pue suonedljddy aue|d ereq |niarels Jo Arewwns :9 a|jgel

25

420

425

430

435

440

445

However, it should consider the trade-o between overhead and probe packet
frequency. SPIDER proposes two kinds of failover: local failover and remote
failover. When a switch perceives that its neighbor is unreachable, this is a local
failover. Remote failover refers that a switch receives a packet that indicates a
failover happening at remote switches other than neighbours, and the packet is
sent from the node with local failover (shown in Figure 4). Moreover, SPIDER
sends heartbeat packets to monitor whether adjacent nodes are alive.

SPIDER devises four di erent tables on OpenState. Thetable 0 and table 1
perform stateless forwarding (e.g., legacy OpenFlow), whilg¢able 2 and table 3
implement remote failure nite state machine (RF FSM) and local failure nite
state machine (LF FSM) respectively. More speci cally, when remote failure
happens in the network, the table 2 is responsible for the transition of state
(from normal to F;), and reroutes packets to backup path. The state transition
can also be triggered upon receiving a bounce packet, which is sent back across
its original path until it arrive the switch 2, shown by the red dotted line in
Figure 4. The table 3 mainly processes heartbeat packets to detect if adjacent
nodes enable communication and implements the FSM with two macro states:
UP and DOWN. Initially, all neighbors are in state UP and need heartbeat.
When the rst packet is matched in this table, the state will be updated to
UP: heartbeat request which indicates that packets will be normally forwarded
to primary path and the switch is waiting for heartbeat packet. Otherwise, if
a heartbeat reply is time-out, the state will be updated to DOWN: need probe
Under such state, packets would be forwarded to detour and the switch will
persistently send the probe to monitor status of links.

Solving failover problems in stateless data plane mainly rely on the reaction
of the controller. Links may not be recovered in time and packet loss happens
when the latency between switches and the controller rises. SPIDER utilizes
the collaboration between di erent switches to rapidly recover network while

considerably mitigates packet loss.

26

450

455

460

465

470

475

3.3.2. Static NAT

Bonola et al. [7] implemented a static NAT based on OPP platform. The
static NAT keeps track of states for TCP connections in round-robin fashion
for assigning TCP connections to a set of web servers in a private LAN. The
core of this design is to track two states: global state and per- ow state. More
speci cally, static NAT requires two stateful tables (table 0 and table 1) and one
stateless table (table 2). The table 0 mainly enforces initialization of a new ow
upon receiving its rst packet. When submitting to the next table, the value of
the global variable Gq is used as the metadata labeled in the packet. Once the
ow is bound to its assigned server through its rst packet, subsequent packets
will be forwarded to the same server. The table 1 is used to translate destination
address from external address to one of internal server's addresses. The table
2 processes stateless forwarding on reverse direction. A concise description of
creating a new ow is that the rst packet of the new ow entering table O,
which will be labeled as a metadata with the value ofGqy for enforcing server
assignment decision. Then it will be submitted to the next table for assignment
based on the last bit of packet's metadata.

Some network functions repeat simple logic to every ow (e.g., port knock-
ing), which can be completely implemented in data plane to avoid the commu-

nication overhead between the controller and switches.

3.3.3. HULA

HULA [28] is a scalable load balance scheme written in P4. HULA adopts
ECMP (Equal Cost Multipath) strategy, and performs the distance vector al-
gorithm in switches. HULA uses the distribution of network link utilization
information to obtain the best next hop and uses probe packets to advertise
its own link status. Moreover, the information stored in switch gives the best
next hop towards any destination instead of calculating the whole path for every
ow.

Two key phases in HULA are processing probe packets and owlet forward-

ing. (1) The HULA probe packet, which carries the value of maximum link

27

480

485

490

495

500

505

utilization, is forwarded to all paths for updating information on the switch.
(2) Flowlet forwarding, which prevents packet reorder, uses a hash table to save
information: the last time a packet was seen for the owlet, and the best hop
assigned to that owlet. To achieve these phases, HULA devises a new header,
a metadata for probe packets, and several register arrays. Théula_header
consists of two elds: dst_tor and path_util . The dst_tor represents the destina-
tion of the packet, and the path_util represents the path utilization of previous
switches. Thenxt _hop in metadata devised for a normal packet represents the
best next hop of this packet, which would be modied after the process of
pipeline. Besides, in order to support stateful operations in data plane, ve
state variables (registers) are de ned: min _path_util , besthop, update_time,
flowlet _hop, and flowlet _time. (1) Both flowlet _time and update_time record
the last time at which states are changed. For example, when a packet arrives,
it needs to update the time of the owlet in which the packet is located. (2)
flowlet _hop variable records the next hop of packet to avoid packet reordering.
(3) besthop tracks the best next hop, and can be changed if the value of the
min _path_util is updated. (4) min _path_util stores the information of utiliza-
tion on the best path, which is updated by the maximum value comparing with
the speci ed state stored in header elds of the incoming probe packet.
Implemented with P4 in stateful data plane, HULA beats previous load
balanced algorithms implemented in custom silicon on a switching chip (e.g.,
CONGA [78]), which have a long hardware design periods and can not be mod-

i ed once implemented.

3.3.4. HashPipe

Sivaraman et al. [75] proposed a heavy-hitter detection algorithm, HashPipe,
implemented based on P4. The HashPipe tracks th&-heaviest ows with high
accuracy by maintaining both ow keys and counts of heavy ows in data plane
(shown in Figure 5). HashPipe manages multiple stages to store heavy ows'
information by dividing the switch process per packet into the rst stage and

next stages. When a packet arriving in the rst stage, its counter is updated if

28

Figure 5: HashPipe [75] consists of several stages. In stage 1, a new ow (e.g., ow with
key L) will initiate a new item and replace an existing item with the minimum value (e.g.,
item with key K). Afterwards, the replaced item will be evicted to the next stage and same
operations will conducted. Lastly, an item would be deleted from the three stages. HashPipe
may generate duplications since di erent stages may save same ows (e.g., item with key L

simultaneously exists in stagel and stage3).

its key matches a hit. If it fails to match, it would be initiated when there are
available slots. Otherwise, it will replace the originated key. At the same time,
the metadata in the packet would carry the originated key's information to the
s0 Next stage. In all downstream stages, if the packet matches successfully and the
corresponding counter in the matched table item is bigger, it would replace the
item as in the rst stage, otherwise it is directly forwarded to the next stage.
Through this \smoke out" method to transfer heavy keys, HashPipe implements
simple heavy-hitter detection under the condition of limited available memory.
sis However, HashPipe may produce duplication in di erent stages (shown in Fig. 5)
due to its \smoke out" method (as shown in Figure 5).
Previous works need to consider the tradeo of reasonable accuracy and
acceptable overhead when monitoring heavy ow (e.g, net ow [79]). The pro-
grammability of P4 enables HashPipe to implement the heavy hitter in each

s Switch with few memory consumption and high accuracy.

29

525

530

535

540

545

550

3.3.5. Dapper

Dapper [8] is a TCP diagnosis that monitors TCP performance accurately
in real time at network edge. Once Dapper identi es network bottleneck, its
specialized tools can nd out what causes the bottleneck and o er a solution.
Moreover, Dapper monitors tra ¢ close to the server, which provides accuracy
for measurement without monitoring client directly. There are two types of
core metrics required to infer network problems, including easy to infer (e.g.,
counting number of bytes) and hard to infer (e.g., congestion). Dapper devises a
packet process to obtain these metrics, which is rst hashed to either initialize a
new ow or check the statistics storing current information. To reduce the data-
plane state requirements, Dapper adopts a two-phase monitoring technique. The
rst phase monitors all connections continuously but only collects low-overhead
metrics (e.g., average rate of the ow). When a ow needs to be diagnosed due
to poor performance, the second phase will be initialized to investigate it with
more states (e.g., ow statistics).

Dapper utilizes exible packet processing to obtain a ne-grained metrics for
diagnosis in data plane. The challenge is the diagnosis needed to be lightweight

in order to run across a wide range of devices with limited capabilities.

3.3.6. INT

In-band Network Telemetry (INT) is a new method of transmitting network
measurement that enables packets to query switch-internal states (e.g., link
utilization, queuing latency) to achieve ne-grained real-time monitoring [34].
The basic idea is that data plane allows probe packets attached its internal
states to traverse whole network. In the last position of INT path, operators
or controller can obtain all information of data planes by extracting the probe
packets. INT requires the support of data plane for internal state exposure.

Figure 6 shows an example of INT execution. The probe packet is sent
from the INT generator to the INT collector after goes through several INT for-
warders. The probe packet attaches INT metadata information in each arriving

node and nally is extracted by the controller for network analysis. Researches

30

555

560

565

Figure 6: An example of INT execution [80].

have proved that it does work well in addressing some network problems [81].
However, due to the diversity of network deployment and the overhead brought
by probe packet headers, the challenge of INT is how to optimize the problem
of probing paths [80].

INT is a novel application that bene ts from stateful data plane. Network
operators can easily de ne what switch-internal states they need and design how
to process probe packet for reduce of latency and overhead via exible packet

processing. This technology has drawn academic attention in recent years [82].

3.4. Remarks

Many platforms have implemented dozens of stateful applications in their
architecture [6][9]. From the typical application in stateful data platform, e.g.,
port knocking, to today's variety of applications, they not only just leverage
the property of stateful data plane to avoid unnecessary involvement of the
controller, but also utilize the programmability and exibility of stateful data

plane to exploit ne-grained and meaningful designs.

31

570

575

580

585

590

4. Basic Components of Stateful Data Plane

To exploit the exibility and programmability of stateful data plane, this
section describes necessary de nitions and designs, focusing on three aspects:
state classi cation, state machine and state operation. Understanding the rela-
tion and distinct functions of di erent states can help researchers exploit their

applications and improve their stateful processing architecture [83].

4.1. State Classi cation

As the carrier of network information, state is the key component of stateful
data plane. According to its e ective scope, in this paper, states are divided

into three types: per-packet state, per- ow state and global state.

4.1.1. Per-packet State

Per-packet state, which is maintained by each packet, is essential for deliv-
ering state information within each switch or across the network. States for
di erent packets may be di erent.

On the one hand, when states are transferred as metadata within a switch,
they can greatly facilitate the exchange of state information in di erent stages,
e.g., the key-value tuple evicted from the previous stage can be carried in meta-
data of a packet traversing to the next stage [75].

On the other hand, when states are stored in packet's header, they can be
transmitted outside a switch, allowing di erent switches to exchange informa-
tion. First, a switch can change its optimization strategy by extracting packet's
information. For example, in HULA [28], switches obtain the information of
path utilization from received packet sent by the previous switch and such in-
formation is used to determine the next optimal router. Second, the switch can
announce network information through these states proactively. For example, in
SPIDER [2], switch announces the location of a link failure to others by sending

a special packet attaching pre-de ned states.

32

595

600

605

610

615

620

4.1.2. Per- ow State

A ow is identi ed by a unique key (e.g., IP addresses, source/destination
MAC pair or 5-tuple ow identi er) in many platforms [31]. Per- ow state can
be used to track status of each ow in a switch. Such state can be used and
updated when processing packets of corresponding ow. For example, in the
application of port knocking, shown in Figure 8, a ow would be marked as
the \open" state by a switch after verifying a series of packets in the correct
sequence in the switch. Besides, per- ow states reside inside switches, usually
implemented in memory or registers [6].

On the other hand, the states can also be used to update other ows' states.
For example, in MAC learning, trac from a bidirectional ow has two key
based on our ow de nition. Therefore, the application requires cross-state
update [31].

4.1.3. Global State

Global state is a special type of state with various de nitions in di erent
platforms or hardware architectures implementation [4][44]. Here, we de ne
that global state can be accessed and updated by multiple ows. For example,
a global state Gg is used to count the number of received ows [7]. Global state
is essential in many network applications. For example, a global state can be
used to save the port utilization for load balance [7].

On the other hand, many ows show the same behavior in network [84]. A
state machine can be used in di erent ows. Assuming that programmers intend
to record the overall information for all ows described by a state machine, it
would be di cult to obtain states for only portion of these ows through extend-
ing the state machine. For example, programmers require to obtain the total
number of ows transferred in the state 2 (shown in Figure 8). To address this
issue, FlowBlaze [6] proposes a new notion of global state, which is implemented
in registers and can be read/modi ed by all the state machine instances (each
ow associates with a state machine instance) originated from the same state

machine de nition. The previous problems can be easily addressed by using

33

625

630

635

640

645

650

global state: programmers can only specify a global state to update it when a

ow enters the state 2.

4.1.4. Discussions

Table 7 shows the di erences among all three types of states above. The main
di erence between per-packet state and two other states is that per-packet state
locates on packets. And we distinguish the per- ow state from the global state
by whether the states can be accessed and modi ed by multiple ows.

In addition to classi cations of state above, other classi cation methods also
exist for di erent objectives and applications. For example, considering whether
states need to be migrated, they can be divided into soft state and hard state.
Soft state can be recovered through each packet easily, while careful migration
needs to be considered for hard state since it requires to be copied from other
switches [12]. Bifulco et al. [15] classi ed state information to two categories:
packet state and global state. The packet state is associated with a single packet
and the global state is associated with the device while it persists across packets.
Pontarelli et al. [6] proposed a distinct notion of global state, which can be read

and modi ed by all ows generated from the same EFSM de nition.

4.2. State Machines

Stateful applications can be abstracted as state machines. Hence, how to

correctly design a proper state machine is essential in stateful data plane.

4.2.1. State Machine Abstraction

Network functions, i.e., applications, deployed on stateful data plane have
di erent logics. To correctly abstract logics of stateful network functions, Finite
State Machine abstraction is usually used [85][86]. OpenState adopts Mealy
Machine [35] as its state machine abstraction. In short, a transition in state
machine refers to changing from one state to another certain state, which can
be described asT : S 1! S O (introduced in Section 3). For example,
in a port knocking shown in Figure 8 (see details in Section 4.1.2), nodes are

states and edges represent transitions. Transitions are marked with the tuple

34

Figure 7: State machine of a ow counter [6]. Packets of a ow will be dropped after receiving

more than 1000 packets from the same ow.

35

[28] smo Joj Bunoipaid sjppow Bulures| saulyoew anes (g)

so|qelen Arelodwal [eqo|o (g)

([2] L¥N oneIS) smo [[e Jo Jaguinu 8y} Junod (2) 18)unod eqo|o (2) 1918169y ares [eqo|o
[2] viod jo uonezin ayy anes (1) snyels 1od (T)
[28] synsai Bunndwoa mo Buines Joy sojqelen Areiodwal (9)
‘[28] uonaipaid Bulures| sulyoew 10} SMO JO Salnjea) anes (§)
[62] mo yoea Anuapi 01 wyiobie ysey jo Ay ayl (v) mo Jad sajqeuen Arelodwa] (1) nvdg/
([gz] v1NH) 132ed paniadal 1se| ayl Jo dweisawi ayl anes (g) uolewlojul Mo aleloge|d awos xoell () NVHS/
[S] uonoarep poo -NAS ‘[£9] uonosisp soaaq ‘[s.] semy Aneay 121Unod Moj4 (2) VY 9IELS MO -13d
B8 ‘suonealdde snouea ul pasn ag ued JBUNOI V¥ (g) | MO e Jo sulydew alels ayl Jo snels yoel| (T) | J81sibay
[T€] Burpouy
1od ul aulyorw a1elS JO SNILIS ulelad ay) uasalday (1)
[2] s19x9oed [eloads
Buipeaids Aq JaA0jie) JO SUoNeI0| 3yl ¥lomau asunouuy (£) SOYI1IMS Usamiaq uoiewlopul abueyox3 (2)
[82] s19xoed Ag youms 1xau ayl Joj uonezijin yred ayl ad1noN (2) sabe)s 1uaia Ip ul 19PESH alels 19yoed-1ad
[g/] s19xoed Jo erepelaw ul sired | uonewlolul ayels Jo abueyoxa ay arell|jioed (T) SrepeIsn
anjea-Aay Buines Ag uonewojul Jajsuey auladid ul sabels (1)
so|dwex3 abesn uoneosoT adAL

a1e1s Jo sadA] aaiyl :/ 9|gel

36

655

660

665

670

675

consisting of the condition and an action. In this port knocking, when a switch

receives the packet of a ow that satis es the corresponding condition under its
current state, it enters the next state and the switch drops these probe packets.
Until the state is \Open", the switch would forward those packets with port=22.

Although Mealy Machine is suitable for transforming the stateless \match-
action" table into stateful process [88], some network functions are still not sup-
ported since per-packet processing interval in them may be too long to a ect
processing latency. Another problem is that Mealy Machine needs to explicitly
de ne all the possible states, which may lead to state explosion [6]. Hence, re-
searchers consider better abstraction to simplify the design of network functions'
state machine. Flowblaze [6] resorted to Extended Finite State Machines (EF-
SMs) [56], and OPP [4] adopted eXtended Finite State Machines (XFSM) [35].
! They extended the Mealy Machine model by introducing: (1) variablesD to
describe the state; (2) a set of enabling functiond=(f; : D! 0;1,f; 2 F) to
trigger transitions; (3) a set of update functionsU(u; : D! D, u; 2 U). Thus,
the transition is expressedasT :S F 1! S U O.

The improved extended nite state machine improves enabling functions for
triggering transitions, which enables programmers to exploit more meaningful
stateful applications. Afterward, the state transition is no longer just \match"
next state, but can also determine the next state based on \conditions". For ex-
ample, a ow counter is shown in Figure 7. The condition of triggering transition
from state 1 to state 2 is that the counter of a ow is more than 1000. Besides,
the improvement will also augment the complexity in hardware implementation

(e.g., condition blocks) [4].

4.2.2. State Machine Classi cation
Most of stateful network applications can be abstracted into state machines,

which can be classi ed into two types: nite state machine and extended

1EFSM and XFSM are the same abstraction and simply use di erent acronyms, and we

use EFSM in this paper

37

680

685

690

695

700

705

nite state machine

A state machine may perform the whole process of network functions from
initialization to extinction, in which every phase is explicitly de ned. Such state
machines are referred as nite state machines. Finite state machines may need
to work with some speci c protocol states (e.g., TCP three-way handshake),
or can be abstracted into certain network functions (e.g., link failover and port
knocking). For example, in the port knocking shown in Figure 8 (see details in
Section 4.1.2), the initialization of a new ow would be marked \default". After
the ow going through three state transitions, it would become the nal state
\open". This indicates that the port is open and the whole process of a nite
state machine is completed.

On the contrary, some applications are de ned as an extended nite state
machine whose core logic requires data variables to model counters. Speci -
cally, these applications monitor the value of counters and execute pre-de ned
operations when these counters exceed pre-de ned thresholds.

An extended nite state machine is used to abstract a network monitoring
that needs to consistently supervise network tra c (e.g., heavy hitter detection,
DDoS detection and ow size monitoring). Compared to traditional stateless
data plane architecture that controller needs to periodically query statistics from
switches, stateful data plane with this state machine can signi cantly reduce
bandwidth consumption and controller overhead [5].

Table 6 summarizes details of network applications that are implemented

based on these two types of state machines.

4.2.3. Remarks

Basically, the relations between ows and state machines can be one-to-one,
many-to-one and one-to-many. Considering limited memory space, e.g., TCAM
(Ternary Content Addressable Memory), a state machine usually can be shared
among many ows [6]. A ow can also connect to two or more state machines
simultaneously, which is very common in today's network requirements (e.g., a

MAC learning and rewall in a switch). And the problem for network operator is

38

710

715

720

725

Figure 8: State machine of port knocking [31]

how to let the switch processing packets correctly and rapidly. The competition

of state machines is e ective way (Section 5.3).

4.3. State Operations

How to deploy state machines in data plane is critical for success of stateful
data plane. In the OpenFlow version 1.5 [89], a group table is used to support
stateful operations, which can solve problems such as fast failover. However,
its exibility is limited because it cannot provide enough programmability to
satisfy diversi ed requirements of stateful applications. Therefore, several ap-
proaches are proposed to enforce deployment of stateful applications: extensible

match/action table and control ow.

4.3.1. Extensible Match-action Table
OpenFlow's \match-action" abstraction is innovative to permit a certain

level of programmability. However, it is still not exible enough to satisfy de-
mand of network applications. Thus, appropriate forwarding abstractions in
data plane are required. A number of platforms apply the stateful table to im-
plement state machines, which is originated from OpenFlow's \match-action"
abstractions [4][5][31]. Bianchi et al. [31] found that OpenFlow \match-action"
primitive can be reused with a broadened semantic. OPP adopts the EFSM
table to nish its stateful operations, which is also an extended version of the

\match-action" table. SDPA proposes a new \match-state-action" paradigm in

39

730

735

740

745

750

755

which state information is maintained and modi ed within the data plane. The
major di erence of \match-action" abstraction compared to \match-transition-
action" abstraction is the addition of a stateful modi cation operation. State
modi cation in the extended \match-action” table usually occurs after matching
packets. In the meantime, the extended \match-action" table splits \actions"
into two types: one is the normal action executing on the packet, and another
is the state action modifying the original state saved in the switch (shown in
Figure 3). For example, the port knocking (Figure 8) may contain three tables.
A packet would match a ow by the key in the State lookup table query the
current state in the State machine tableand nally update its state by matching

actions in the last table.

4.3.2. Control Flow

In addition to methods above, the programmable data planes provide more
easy ways to achieve stateful operations [11][58]. P4 provides a DSL (Domain-
speci ¢ language) that enables network administrators to design their own
packet process for switches. Speci cally, a P4 program should de ne a Direct
Acyclic Graph (DAG) of \match-action" stages, named control ow, which de-
nes how packets are processed [90]. The control ow may contain an arbitrary
number of stages. Therefore, how to design multiple suitable stages to control
the correct logic is the key to achieve a complete stateful network application.
For example, HULA [28] designs several stages for di erent matching, where the
getdst_tor is used to extract the destination of packets, thehula_logic is used
as load balancer and thehula_to_host is used to forward packets. Besides, P4
compiler also o ers a special stateful memory, called registers. Their values can
be read and written in actions. The transition of states in P4 represents how
to operate the modi cation of registers, e.g., HULA de ned ve register arrays

for storing link and packets information.

40

760

765

770

775

780

5. Schedule and Optimization Technologies

Considering the distributed property of stateful data plane, e.g., distributed
state management and logic operations, it is very important and full of great
challenges to achieve correctness, e ectiveness and e ciency. This section will

discuss several fundamental technologies on these issues.

5.1. Consistency

Inconsistency may lead to error states in state data plane, resulting in exe-
cuting improper logics. Consistent problem is important in stateful data plane.
Two types of consistency are considered in this paperintra-switch consis-
tency and inter-switch consistency . On one hand, due to state modify
abstraction on the data plane, inconsistency may occur when packets of the
same ow are read and written in an improper order within a switch. In the
meantime, the inherent consistency problem among switches in stateful data
plane is inevitable due to distributed state management among switches. These
two consistency problems will shake the stability and availability of the whole
network in varying degrees, and even cause network faults (e.g., incorrectly

skipping rewall policies).

5.1.1. Intra-switch Consistency

Inside switches, the state stored in a given memory is accessed and modi ed
at a rate that belongs to the fraction of packet processing rate, while read/write
operations may occupy multiple clock cycles [38]. The interval time from read-
ing a memory location to completing the modi cation may depend on tra c
pattern, which may potentially lead to concurrent read/write of the same lo-
cation. It will cause inconsistency problem if a read operation precedes the
completion of a write operation in the same memory location. Such situation
usually occurs when packets of the same ow are processed in parallel. For ex-
ample, assuming that two packets (sayp; and p,) of the same ow consecutively
enter the pipeline at the same time. p; needsN clock cycles to complete the

memory modi cation, while p, only needsM (assumeM < N) clocks to access

41

785

790

795

800

805

810

the same memory location. At this time, p;'s modi cation is not completed yet,
resulting in inconsistency.

Several solutions have been proposed to solve this issue (see Table 8). For
example, Pontarelli et al. [38] proposed a scheme of using the mixer's round
robin policy to separate two packets coming from the same ow byN clock
cycles (the time interval from the rst table lookup to the last state update).

DOMINO [11] o ers a packet-level solution. Each state is installed in an
atom, which is a special stored cell. Each atom can only modify its own state.
Thus, states are not allowed to be accessed or modi ed by multiple stages. This
scheme can eliminate inconsistency problem when updating states, but reduces
the exibility and programmability.

Cascone et al. [59] came up with a locking scheme. If two packets that require
access to the same portion of the memory arrive back-to-back, processing is
paused for the second packet until the rst one has updated the memory. This
seems to be a compromising plan. However, it would a ect the line rate at
which the switch sustains one packet per clock cycle.

Pontarelli et al. [6] pointed out that it is possible to modify their respec-
tive ow states in parallel when processing packets belonging to di erent ows.
Hence, they used a scheduler to guarantee that there are no two packets from
the same ow are processed in parallel in the pipeline. However, when burst
ow happens, i.e., a large number of packets of the same ow arrive, the latency
will be increased.

In conclusion, above solutions have both advantages and disadvantages.
Scheduling packets' order is easy to implement but may cause latency when
packets originated from the same ow burst. Lock scheme violates the principle
of processing packet at line rate. Atom operation overcomes the concern that
a packet stays too long in switch, but it may lack exibility in programming.
Intra-switch consistency problem severely a ects the feasibility of network ap-
plication [91]. Hence, it is necessary to investigate an e ective way to solve this

problem.

42

815

820

825

830

835

840

5.1.2. Inter-switch Consistency

Distributed state management imposes potential inconsistency risks, which
may cause incorrect strategies to switches and even lead to network instability.
However, it is impossible that states saved in the data plane completely achieve
strong consistency without enormous cost. Specifying a location for storing all
states seems to be an e ective way. SNAP [9] puts forward an idea of one big
switch, which adopts a method that all states are saved on a speci ed switch,
and drains all the packets that need to be processed into the switch. This
strategy can reduce memory consumption of most switches, but the switch that
is designated to keep all states would become a bottleneck. Moreover, network
problems would be arisen if the switch is down (e.g., states are unrecoverable).
How to collect exact states from data plane is also a challenging issue.

Mugaddas et al. [92] proposed a state duplication scheme based on eventual
consistency in SNAP platform. They pointed out that switches with limited
amount of hardware resources are di cult to execute complex algorithms for
employing strong consistency. Hence, they considered the replication scheme
based on eventual consistency, and demonstrated that the method can bring
low complexity while maintaining small replication error among replicas.

Sviridov et al. [93] proposed a relatively simple way to ensure consistency
in network-wide by sending update messages and state synchronization trig-
gered by certain conditions. They designed a state replication scheme based
on the eventual consistency to provide state synchronization, and foresaw three
di erent scenarios in order to achieve state synchronization.

Achieving strong consistency requires some consumption of switch resources.
Accomplishing eventual consistency may lead transient error. The involvement
of controller can apply in delay insensitive tasks. How to synchronize stateful
data plane with support for state monitoring and management is still a chal-
lenge [94][95][96].

43

845

850

855

Figure 9: Process of migration in Swing state [12]

5.2. Migration

Migration plays an important role in ensuring high availability of network.
When switch fails or network server requirements are changed (e.g., network up-
date), migration is needed. For example, states in switches need to be migrated
from one switch to another, which should guarantee correct network behaviors.
In stateless data plane, the execution of migration is mainly determined by the
controller [97] or middlebox [98]. The controller monitors the changes of the
environment in real time and produces corresponding countermeasures. How-
ever, since each switch maintains its own states in stateful data plane, migration
becomes much more complex. The major challenge is that how to consistently
migrate states from the original switch to the new switch without a ecting the
network.

Fortunately, stateful data plane has its own unique mode of state transmis-
sion, some states maintained by switch can be learned by observing incoming
tra c [2]. In other word, switch can correctly update some own states based on

current received packets without acknowledging any phase of installed state ma-

44

860

865

870

875

880

885

chines. For example, the variableflowlet _time in HULA [28] can be overwritten
by incoming packets.

Nevertheless, not all states in switches can be synchronized by the over-
ridway of packet-carrying propagation. Luo et al. [12] proposed a consistent
migration for data plane applications that requires strong-consistency network-
wide. At rst, they categorized P4 states into two types: soft state and hard
state. A state is soft if its value is computed from random variables, which
is usually used for optimization purposes in congestion control algorithms or
scheduling. For example, the states stored in the variableflowlet _time [28]
depend on packet arrival times. Soft states needn't to be migrated since the
functions can tolerate inconsistency by design. In contrast, hard states are
maintained deterministically and explicitly. They cannot be correctly updated
from packets or ow tra c. For example, a switch can not recover which phase
of safety certi cations justi ed by current tra cs in port knocking (shown in
Figure 8). And then, they consider two forwarding modes: state_pickup and
state_putdown. A migration's source device in the mode ofstate_pickup will
record state values, and tunnel a clone packet encapsulating the state values to
the destination device. In the mode ofstate_putdown, the destination switch of
migration will decapsulate the packet to obtain the state values while overwrit-
ing its variables. These two modes de ne state migration from source device to
destination device. Finally, they design an augmentation procedure to support
these forwarding modes for automatic migration at runtime. Before migration,
controller classi es state types and augments P4 programs at deploy time. The
process of migration is shown in Figure 9. Inconsistent migration is rare, mainly
caused by two issues: (1) packet re-ordering and loss, and (2) inconsistent hash
collisions between di erent hash implementations.

He et al. [33] discussed two alternatives to migrate states in P4. One is trans-
ferring states directly in data plane. Another is collecting states from the data
plane and installing on target switches by controller. They recommended the
second option since the rst method should require network function nodes to

generate data plane packets with payloads of state information. The controller

45

890

895

900

905

910

915

periodically fetches states and stores in database. Controller only redistributes
states that are involved in migration. Experiments showed that it has no mi-
grated packet loss while introducing additional forwarding latency. However,
since the total migration time increases with the number of states, the latency
will be unacceptable when there are too many states needed to be migrated.
Recently, He et al. [99] proposed a state management framework, which
provides an automated and consistent state management in P4. They analyzed a
P4 program as a control ow graph and excluded all stateless nodes to provide all
stateful operations, which quickly identi es the network states that are critical
for data plane recon gurations (e.g., migration). This is an important step to

automatically analyze states from source codes for migration.

5.3. Composition optimization

The trend of network application development is diversi ed and complicated.
A single network device may carry multiple network programs with distinct
functions. Composition optimization becomes critical to their performance. It
can not only reduce extra overhead generated by multiple programs in the data
plane and the assumption of switch resources, but also speed up processing
and optimize overlapped logics among network functions. In addition, careful
inspection for composition can also avoid con icts that may occur when multiple
state machines co-exist in a single switch [26].

The idea of composition in SDN can provide inspiration for composition
in stateful data plane [100][101]. To let multiple programs working mutually
without conict, some platforms have discussed the composition of network
functions in compilers [9][26]. Unfortunately, they did not provide solutions on
composition in detail. Table 8 lists three solutions for composition optimization.

Hancock et al. [102] proposed a portable virtualization solution in data
plane to o er simple composition. By virtualizing a device into multiple de-
vices through di erent ports, multiple programs can be run on one device. This
method is simple, e ective and easy to implement. However, it is unscalable

since it use software to emulate hardware to provide full virtualization [103].

46

920

925

930

935

940

945

Zhang et al. [90] drove the composition happening on pipelines. Considering
that a control ow in P4 programs is a DAG (Directed Acyclic Graph), two
steps are required for composition. Firstly, each control ow is analyzed and
a \match-action stage" is divided into three xed functional pipelines. Next,

a DAG is converted into a uniform linear sequence using topological sorting
algorithm. The authors proved that it prevails Hyper4 [102] in performance.
However, this approach would waste a lot of resources in virtualization.

Zheng et al. [103] explored an optimization problem: merging two weighted
DAGs into one while maximizing overlap. This problem is proved to be NP-
Complete. Then, a heuristic algorithm is proposed to solve this problem, and
the feasibility of the algorithm is demonstrated through experiments.

Above solutions are all designed for P4 programs and enlighten researchers
on the problem of composition, especially the composition of DAG. But they
are not suitable for other platforms, e.g., network functions exploited by the
extensible match-action table. Hence, due to the limitation of di erent platforms
with their own distinct compilers, it's still signi cant to explore a more general

way of composition optimization.

5.4. Placement

The most obvious feature of stateful data plane is that state management
and stateful processing can be o oaded to data plane, which brings many ad-
vantages. However, due to limitations of switches, e.g., limited memory and
computation sources, controller is still indispensable for sophisticated functions.
In this section, we discuss about two kinds of placement issues related to stateful

data plane: state placement and logic placement.

5.4.1. State Placement

Network devices keep their own states independently in stateful data plane,
and the value of states on each device may be di erent. Such distributed scheme
is widely used. However, the challenge is that the states are di cult to man-

age or even synchronize if it needs. In order to facilitate state management,

47

950

955

960

965

970

975

some proposals o er a centralized management. For example, SNAP [9] uses a
centralized scheme that uniformly places states in a speci c switch in the data
plane for maintenance. It is easy to manage and synchronize di erent types of
network states in data plane directly. However, the switch may become bottle-
necks. An improved solution in [92] proposed a backup placement and discussed
the state migration based on eventual consistency to improve robustness of the
centralized management.

On the other hand, not all states need to be stored on switches. Two types
of states can be considered to inhabit on controllers. First, states that may have
low usage can be placed on controllers to save memory resources on switches.
For example, a phantom state on controller is used to solve this problem in
FAST [26]. Second, states, which require complex computation that exceeds
abilities of switches, can also be stored on controllers. For example, if computing
the average ow rate using a counter is hard in switches, the controller could
periodically fetch the counter to compute the result. It is worth noting that
these states should allow inconsistency for a certain period of time, otherwise it
will arise risk of network errors.

Storing and managing states in data plane can accelerate execution of oper-
ation logics, but not all operations are supported due to hardware limitation of
switches. Maintaining state on the controller can take full advantage of the com-
puting power on controllers. However, it only allows delay insensitive states. In
practice, the placement of state could consider a combination of both switches

and controllers according to requirements of applications.

5.4.2. Logic Placement

By elaborating design, network functions can be deployed in data plane di-
rectly. However, in order to ensure the performance and e ciency of packet for-
warding, existing packet processing components of switches are usually designed
as simple as possible [16]. In other words, it is expensive, if not impossible, to
implement sophisticated functions on a switch while guaranteeing forwarding

speed. Hence, complex logics can consider to be implemented on controllers,

48

980

985

990

995

1000

1005

such as complex mathematical calculation and dynamic network scheduling.

Network monitoring is intrinsically suitable for deploying on stateful data
plane. However, some key components of network monitoring are too complex
to implement on switches, e.g., multiplications and divisions are required in
average and EWMA [10]. The usual way is to leave them to controller. Some
stateful data plane platforms and applications involve controller in their design
and implementation [26][76].

When network strategies need to be changed, controller can provide real-
time dynamic scheduling. Firstly, it can dynamically modify internal processing
logic of switches (e.g., state machines). Some platforms allow the operator to re-
place old logics to satisfy changing environment [5][26]. In SDPA, the controller
proactively initiates a new record of states when an application needs stateful
processing. FAST o ers dynamically management to local state machines at
individual switches. Secondly, when network is instable, controller can quickly
lead the process of network recovery. For example, controller is involved when

migration is needed [12].

5.5. Remarks

In this section, several fundamental technologies are discussed to enhance
the performance of stateful data plane. The consistency problems is critical for
the correctness and stability of network. Migration improves fault tolerance of
states. The composition optimization can enhance the speed of stateful process-
ing and prevent errors during processing multiple applications. The placement
separately discusses di erent positions of states and logics. In the most of these
fundamental problems and technologies, controller still plays an important role
in implementations of stateful data plane. Most platforms let controller initi-
ate network functions in data planes. Dynamic changing of functions is also
supported widely [104], which can be achieved through network update (e.g.,
migration). Moreover, controller can provide complex computations and opti-
mization schemes for correctness, e ectiveness and stability of networks. Hence,

currently, controller is still important and indispensible for stateful data plane.

49

wajqoid a19]dwoo-dN

oo v aiims

[€0T] J0SIAYC

ajdwis uoisodwod 9vQ 8jdwis [06] A1odAH
Aseq alejos! 01 uod ayy bBuisn [20T] v19dAH uopeziundo uomsodwod

Ana Ip Jo aaibag uonnjos 1oy

ylpimpueq awnsuo) | azieal 01 Ase3 sabessaw uoneziuoyduAs [e6] 39007
Aoualsisuooul Juaisuel ul aq Aely | 8zifeas 0] Ase3 | awayds uonedldnp arels |[ze6] Aouaisisuod [enjuang A2UB1SISUOD Yolms-Jalu|

Moaugnoqg ayl aq 0] Ase] |abeuew 0] Aseq abrel0ls pazienuad [6] d¥NS 10} suonn|os

abejuenpesiq abejuenpy uonnjos 1oy

i aWaYIS X207 [65] awayas 007

uolresado woyy [TT] ONINOA

1aplo s1eyoed a|npayos

[g€] mre1SUBdO
[9] azejgmol4
[¥] ddO

alel aul| 198 Y

uonn|os

19y

A2UB1SISUOD YoNMS-BAU|
10} suonnjos

salbojouyoa) uoneziwndo pue a|NPayYds :8 a|gel

50

1010

1015

1020

1025

1030

1035

6. Implementation Considerations for Stateful Data Plane

In recent years, programmable switches have gradually aroused interest
among academia and industry. Stateful data plane platforms and applications
can be implemented based on these programmable switches. In this section,
we will discuss current network devices for stateful data plane, as well as their

hardware limitations including computation and memory.

6.1. Available Implementations

Bene ting from the exibility and programmability o ered by current novel
programmable switches, it is convenient for researchers to implement switch
architecture with customized functions and structures running on stateful data
plane [105]. Next, we will discuss both software and hardware programmable
switches [15][106] for stateful data plane.

A software switch executes entire processing logic on a commodity CPU on
top of a fast packet-classi cation algorithm/data structure [41]. Currently, Open
vSwitch (OVS) and CPgD switches [39] are the most popular OpenFlow software
switches. Stateful data plane platforms use the programmability of them to
realize speci ¢ functionality of switches[5][26][36]. OpenState softswitch is an
earlier software switch developed based on CPdQ to provide stateful processing.
SDPA extends Open vSwitch to support \match-state-action" paradigm for
stateful forwarding. The secure channel for communication with controller is
modi ed to allow controller to be able to directly initialize and con gure stateful
applications on switches. Besides, the proprietary switch construct can be easily
designed via using the programmability of Open vSwitch. PISCES [48] is a
P4 customized software switch derived from Open vSwitch, which is the rst
software switch that allows custom protocol speci cation in a high-level DSL
without requiring direct modi cations for switch source code. Evaluation results
show that PISCES programs are about 40 times shorter than equivalent changes
to Open vSwitch source code.

For hardware programmable switches, RMT (Recon gurable Match Tables) [49]

o ers exible match table con guration, de nition of arbitrary headers and

51

1040

1045

1050

1055

1060

1065

header sequences, and state update per packet. Alternatively, dRMT [50] has
signi cant exibility due to its memory and compute disaggregation. However,
both RMT and dRMT can not allow multiple stages to access the same state
block mutually without consuming too much memory space. On the hardware
implementation, FPGA [40][42] can be used to implement data plane functional-
ity, while using a dedicated packet classi cation engine achieved in TCAM chips.
Pontarelli et al. [38] showed the feasibility of hardware implementation based
on FPGA and also discussed on the performance achievable by using an ASIC
to implement OpenState switch. FlowBlaze [6] discusses the implementation
on NetFPGA SmartNIC to support a wide range of complex network functions,
which achieves low latency and consumes relatively few energy. In addition to
FPGA, Li et al. [107] proposed a heterogeneous programmable hardware archi-
tecture consisting of a CPU and a GPU. Besides, there are also a nhumber of
vendors dedicated hardware switches that can provide high-performance pro-

grammability [108].

6.2. Hardware Limitations

Current innovations in switching hardware allow exible per-packet process-
ing and the ability to maintain limited mutable state at switches without sacri c-
ing performance (e.g. RMT [49], FlexPipe [109], Barefoot's To no2 switch [108],
Cavium XPliant switches [110]). But there still exist some limitations in these
designs, which directly a ects the feasibility and complexity of implementing
meaningful programs in stateful data plane. Here, we mainly focus on limita-

tions of computation and memory.

6.2.1. Compute capacity

In order to process packets at line rate, today's programmable switching
hardware has computing limitations. For example Barefoot To no [108] sup-
ports 12 stages per pipeline and multiple pipelines (e.g., 2 to 4) per device. This
limitation restricts functionalities implementing in data plane. For example, a

server function chain includes multiple network functions implementing in a

52

[7TTlleTTl2TT] Ssedoe WvHa feulsixs (z)
[92] wuawanjonul Jajjo1u0 (T)

aouewlopad uoneandde ayelolg1aQ

Alowsw ajgejrene 221eds

Aioedes Aloway

[oTl[TTT] @I19e1 dn Yoo) (T)

suoneoldde awos azieal 10U Ue)

suonelado paywi

auljadid Buireuareouo) (2) uoneindwo)
uonisodwos (1) salireuonouny ajqixa 1211say | auladid ul sabels panwi
uonnjos uonoa e annebaN swia|qoid adAL

uoreNwi| afempieH 6 o|qeL

53

1070

1075

1080

1085

1090

1095

single switch [33]. The problem can be mitigated by application composition
(Section 5.3). But if there is no or few overlap between di erent applications,

the method is not e ective. Another way is to concatenate several pipelines
to prolong processing stages. But it incurs latency per packet while reduces
throughout.

Another issue is that programmable switches only support basic operations,
e.g., addition and subtraction, bitwise operation. It is di cult to provide com-
plex operations since they are expensive executing in hardware chip, e.g., mul-
tiplication, division and loop. These complex computations are particularly es-
sential in some applications [10][111]. For example, network tra c entropy is a
well indication on tra c distribution across the network (e.g., DDoS detection).
The entropy computation consists of two complex operations, i.e., logarithm and
division, which can be approximate to exponential functions. Ding et al. [111]
proposed two novel algorithms, P4Log and P4Exp, to estimate logarithms and
exponential functions with a given precision by only using P4-supported arith-
metic operations. They successfully implemented entropy-based applications in
programmable switches. Sharma et al. [10] concluded several requirements of
complex computation in switches. For example, RCP (Rate Control Protocol)
needs to compute the fair rate by multiplication and division operations for op-
timizing the link utilization [115]. They transferred these complex computation

to table lookup which pre-de nes logarithms mapping results.

6.2.2. Memory Capacity

A very fast memory is essential for packet processing at high speed, e.g.,
TCAM or SRAM, which is expensive and only available in small capacities [116].
For example, Barefoot To no [108] provides few tens of MBs of available mem-
ory. This limitation is manifested in restricting to the amount of storing states.
Applications that are sensitive to memory size would be a ected or even infea-
sible. For example, load balancing [28] lapses into slower, accuracy of sketching
or monitoring applications declines, and even network diagnosis [8] that relies

on per- ow or per-packet monitoring would be infeasible if the number of con-

54

nections is large [117]. Hence, most of the applications need to make tradeo s
between performance and memory usage.

1100 Simply increasing the memory size on switches brings challenges to the de-
sign of switches, e.g., consuming additional chip area [11], not matching packet
processing speed. The controller can be used as an auxiliary memory to store
states that are rarely read [26]. For example, a NAT maintains a statistics state
of the number of total packets [118]. However, this method does not suitable

uos fOr states that requires many writing/reading, since latency between switches
and the controller CPU is high and unpredictable.

Other works try to enable network switches to access external memory [112][113][114].
DRAM can be used as an external memory since it is more a ordable than on-
chip bu er memory. Kim et al. [112] aimed to the feasibility of accessing remote

e memory from programmable switches. They assume that RDMA-capable NICs
in remote memory servers directly connect switches. So switches can access the
remote memory via the channel between the RDMA-capable NICs and switches
while processing packets by DRAM primitives without any involvement of CPU.
Beckmann et al. [113] envisioned a combination of a P4-capable ASIC with a

s DRAM scale match-action table. A packet rstly is preconstructed the match
key eld in ASIC, and sent to a FPGA which stores network states in DRAM.
Secondly, the FPGA sends back the original packet with matching results. Fi-
nally, corresponding actions would be executed when the ASIC received the
packet. In this work, ASIC needs to consume 100Gbps Ethernet ports for high

120 bandwidth connection to FPGAs. Kim et al. [114] explored a new approach
that switch ASICs can access external DRAM purely in the data plane without
involving CPUs on servers. If the data plane does not need to access DRAM,
packets will be forwarded normally. Otherwise, it crafts a packet with DRAM
header in pipeline and sends it to the DRAM server. Then the server replies

s the packet with matching results that needs to be processed in pipeline again.
Therefore, this method will incur extra latency.

The basic idea of the three methods is setting an external DRAM memory.

Although they would incur extra latency, they all extend memory in switches

55

1130

1135

1140

1145

1150

1155

while keep processing at line rate. However, they should consider the re-order

of packets because some packets need to enter in the pipeline twice.

6.3. Remarks

The performance of switches greatly a ects deployment of stateful data plane
applications. This section lists a number of programmable switches and analyzes
hardware limitations of current programmable switches. Both computation and
memory limitations can a ect the feasibility and exibility for the design of

stateful applications.

7. Future Research Discussions

There are many aspects need to be further improved in stateful data plane,
as we conclude in Figure 10. How to optimize stateful data plane on appropri-
ate switches, and develop high performance applications on stateful data plane
are the mainstreams of stateful data plane research. Several potential future

research issues on stateful data plane are summarized as below:

1. A uni ed standard for stateful data plane. There is no overall win-
ner for stateful data plane today. P4 seems to be a main trend compiler
in recent years. Although the appearance of P4 is to tackle the short-
age of open ow switch and provide a exible processing pipeline, it has
developed to a popular switching architecture following by many famous
vendors and group (e.g., VMware, Google). A number of mature network
applications has exploited by P4 (e.g., Hula [28]). Researchers also have
leveraged it to address many network problems [117][81]. We believe its
potential has not been explored completely. However, some novel stateful
packet processing architectures also show remarkable performance [6][11].
More generic and universal programming languages and switch models for
stateful data plane are expected in future. For example, sluice [119] is a
network-wide speci cation of the data plane whose aim is to o er more

generic network tasks.

56

Figure 10: Summary of potential future research issues on stateful data plane

2. The involvement of controller in the stateful data plane. Although
network functions can be implemented directly in stateful data plane with-
out the intervention of controller, controller is still important for stateful

1160 data plane architecture today. Leveraging respective characteristics of the
controller and data plane, researchers have deployed a routing strategy
by mutual cooperation of the controller and data plane [120][121]. The
data plane executes simple machine learning models with low accuracy to
decrease the number of monitoring ows that need to upload to the con-

1165 troller. On the other hand, the controller implements complicated mod-

57

1170

1175

1180

1185

1190

1195

els with high accuracy for ow prediction. The cooperation makes ow
prediction via machine learning in data center network possible, since it
decreases the communication overhead between the controller and data
plane. Whether and to what extent controller should be involved in im-
plementation of stateful data plane applications still remains to be an open

guestion.

. The development potential of stateful data plane has not been

fully explored. Ranging from port knocking, which is de nitely suitable
for o oading to stateful data plane, to today's various complicated ap-
plications executed on stateful data plane, a humber of talent ideas have
come true. There will be more explicit network application requirements
emerging in the future (e.g., In-band Network Telemetry [80][122]), or tra-
ditional available protocol (e.g., FRR in P4 [123]). How to fully exploit the
programmable potential of stateful data plane to provide more powerful

and diversi ed functions will be one of the concerns in future.

. Implementing machine learning algorithms in stateful data plane

is a challenge. In recent years, machine learning algorithms do have
o ered distinct solutions to improve SDN network performance [124].
Researchers consider directly o oading machine learning algorithm to
switches to optimize network [87][120][125]. pForest [87] tries to imple-
ment random forest in data plane and experiments prove it has high accu-
racy and exibility. However, limited computations (e.g., no oating) and
memory introduce great challenges to implementation of machine learning
algorithms in stateful data plane. Setting a look up table to store results
of complex mathematical operations is an e ective way to satisfy the need
of di erent machine learning algorithms [126]. The tradeo of accuracy
and memory usage still needs to be considered. Hence, designing suitable
machine learning models and algorithms that t stateful data plane, or
enhancing stateful data plane's capability to support these models and al-
gorithms, will have an important impact on the future ecology of stateful

data plane applications.

58

5. Stateful data plane can benet in-network computation.
O oading a set of compute operations from end hosts into stateful data
plane is feasible and can provide considerable performance bene ts [116].
1200 Currently, the bottleneck in distributed machine learning training shifts
from computation to communication. Experiments show that implement-
ing stateful data plane as accelerators can speed up machine learning
training [127][128]. On the other hand, stateful data plane can also help
to take up the performance of some essential applications in cloud ser-
1208 vice (e.g., netcache [30], mapreduce [129]). Except for tackling traditional
network problems, how stateful data plane can improve communication
problems in emerging technologies is also an open issue.
6. Stateful data plane can ease the implementation of future Inter-
net architecture. ICN (Information Centric Networking) is a networking
1210 paradigm that breaks the host centered connection mode of TCP/IP and
becomes the information (or content) centered mode. In NDN (Named
Data Networking), which is a representative of ICN instantiations, the
problem is that current network equipment cannot be seamlessly extended
to o er NDN data plane functions. To solve this problem, researchers have
1215 implemented NDN router via stateful data plane that o ers programma-
bilities to satisfy frequent and drastic change in devices' behavior while
keeps high processing speed [130]. On the other hand, the emerging archi-
tecture SD-ICN [131] integrates the thought of SDN's central management
into ICN, which realizes some important network applications that have
1220 not been well considered in ICN (e.g., QoS). SD-ICN also faces challenges
in the data plane, e.g., the OpenFlow-based data plane fails to consider
the evolution of both ICN protocols and the OpenFlow protocol [132].
Inspired by the successful implementation above, stateful data plane can

be considered to improve such future Internet architecture.

59

1225

1230

1235

1240

1245

1250

8. Conclusions

SDN provides a convenient state management to improve the network utiliza-
tion e ciency. However, unnecessary interactions between controller and data
plane brings additional overhead and delay to network. Stateful data plane
architecture allows applications to be deployed directly in data plane without
explicit involvement of controller. Thus network delay and controller overhead
can be reduced. In this paper, a comprehensive survey on recent research works
of stateful data plane is conducted. Several existing aspects for stateful data
plane such as basic components, schedule and optimization technologies and im-
plementation consideration are introduced and summarized. Also, the strengths

and weaknesses of existing relevant research results are analyzed.

9. Acknowledgement

This work has been partially supported by Chinese National Research Fund
(NSFC) No. 161772235, 61532013 and 61872239; Natural Science Foundation
of Guangdong Province(China) No. 22020A1515010771; Science and Technol-
ogy Program of Guangzhou(China) No. 3202002030372; the UK Engineering
and Physical Sciences Research Council (EPSRC) grants EP/P004407/2 and
EP/P004024/1; the Innovate UK project 47198.

References

[1] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, J. Turner, OpenFlow: enabling innovation in cam-
pus networks, ACM SIGCOMM Computer Communication Review 38 (2)
(2008) 69{74.

[2] C. Cascone, D. Sanvito, L. Pollini, A. Capone, B. San®, Fast failure
detection and recovery in SDN with stateful data plane, International
Journal of Network Management 27 (2) (2017) e1957.

60

1255

1260

1265

1270

1275

[3] S. M. Mousavi, M. St-Hilaire, Early detection of ddos attacks against sdn
controllers, in: 2015 International Conference on Computing, Networking
and Communications (ICNC), IEEE, 2015, pp. 77{81.

[4] G. Bianchi, M. Bonola, S. Pontarelli, D. Sanvito, A. Capone, C. Cas-
cone, Open Packet Processor: a programmable architecture for wire speed
platform-independent stateful in-network processing, in: arXiv preprint
arXiv:1605.01977, 2016.

[5] C. Sun, J. Bi, H. Chen, H. Hu, Z. Zheng, S. Zhu, C. Wu, SDPA: Toward a
stateful data plane in software-de ned networking, in: IEEE/ACM Trans-
actions on Networking, 2017.

[6] S. Pontarelli, R. Bifulco, M. Bonola, C. Cascone, M. Spaziani, V. Bruschi,
D. Sanvito, G. Siracusano, A. Capone, M. Honda, et al., Flowblaze: State-
ful packet processing in hardware, in: Proceedings of the 16th USENIX
Conference on Networked Systems Design and Implementation, USENIX

Association, 2019.

[7] M. Bonola, R. Bifulco, L. Petrucci, S. Pontarelli, A. Tulumello, G. Bianchi,
Implementing advanced network functions for datacenters with stateful
programmable data planes, in: Local and Metropolitan Area Networks
(LANMAN), 2017 IEEE International Symposium on, IEEE, 2017, pp.
1{6.

[8] M. Ghasemi, T. Benson, J. Rexford, Dapper: Data plane performance
diagnosis of tcp, in: Proceedings of the Symposium on SDN Research,
ACM, 2017, pp. 61{74.

[9] M. T. Arashloo, Y. Koral, M. Greenberg, J. Rexford, D. Walker, SNAP:
Stateful network-wide abstractions for packet processing, in: Proceedings

of the 2016 ACM SIGCOMM Conference, ACM, 2016, pp. 29{43.

[10] N. K. Sharma, A. Kaufmann, T. Anderson, C. Kim, A. Krishnamurthy,

J. Nelson, S. Peter, Evaluating the power of exible packet processing for

61

1280

1285

1290

1295

1300

1305

network resource allocation, in: Proceedings of the 14th USENIX Confer-
ence on Networked Systems Design and Implementation, USENIX Asso-
ciation, 2017, pp. 67{82.

[11] A. Sivaraman, A. Cheung, M. Budiu, C. Kim, M. Alizadeh, H. Balakrish-
nan, G. Varghese, N. McKeown, S. Licking, Packet transactions: High-
level programming for line-rate switches, in: Proceedings of the 2016 ACM
SIGCOMM Conference, ACM, 2016, pp. 15{28.

[12] S. Luo, H. Yu, L. Vanbever, Swing state: Consistent updates for stateful
and programmable data planes, in: Proceedings of the Symposium on
SDN Research, ACM, 2017, pp. 115{121.

[13] A. Shaghaghi, M. A. Kaafar, R. Buyya, S. Jha, Software-de ned network
(SDN) data plane security: Issues, solutions and future directions, in:
arXiv preprint arXiv:1804.00262, 2018.

[14] T. Dargahi, A. Caponi, M. Ambrosin, G. Bianchi, M. Conti, A survey on
the security of stateful SDN data planes, IEEE Communications Surveys
& Tutorials 19 (3) (2017) 1701{1725.

[15] R. Bifulco, G. Retari, A survey on the programmable data plane: Ab-

stractions architectures and open problems, in: Proc. IEEE HPSR, 2018.

[16] E. Kaljic, A. Maric, P. Njemcevic, M. Hadzialic, A survey on data plane
exibility and programmability in software-de ned networking, IEEE Ac-
cess 7 (2019) 47804{47840.

[17] F. Bannour, S. Souihi, A. Mellouk, Distributed SDN control: Survey,
taxonomy, and challenges, IEEE Communications Surveys & Tutorials
20 (1) (2017) 333{354.

[18] W. Xia, Y. Wen, C. H. Foh, D. Niyato, H. Xie, A survey on software-
de ned networking, IEEE Communications Surveys & Tutorials 17 (1)
(2015) 27{51.

62

1310

1315

1320

1325

1330

[19] D. Kreutz, F. M. Ramos, P. Verissimo, C. E. Rothenberg, S. Azodol-
molky, S. Uhlig, Software-de ned networking: A comprehensive survey,
Proceedings of the IEEE 103 (1) (2015) 14{76.

[20] J. Xie, D. Guo, Z. Hu, T. Qu, P. Lv, Control plane of software de ned

networks: A survey, Computer communications 67 (2015) 1{10.

[21] N. Gude, T. Koponen, J. Pettit, B. Pfa, M. Casado, N. McKeown,
S. Shenker, NOX: towards an operating system for networks, ACM SIG-
COMM Computer Communication Review 38 (3) (2008) 105{110.

[22] POX, https://github.com/noxrepo/pox , Access on: 2019.

[23] J. Medved, R. Varga, A. Tkacik, K. Gray, Opendaylight: Towards a
model-driven SDN controller architecture, in: Proceeding of IEEE In-
ternational Symposium on a World of Wireless, Mobile and Multimedia
Networks 2014, IEEE, 2014, pp. 1{6.

[24] Project oodlight, http://ww.projectfloodlight.org/ , Access on:
20109.

[25] D. Erickson, The beacon OpenFlow controller, in: Proceedings of the
second ACM SIGCOMM workshop on Hot topics in software de ned net-
working, ACM, 2013, pp. 13{18.

[26] M. Moshref, A. Bhargava, A. Gupta, M. Yu, R. Govindan, Flow-level
state transition as a new switch primitive for SDN, in: Proceedings of the
third workshop on Hot topics in software de ned networking, ACM, 2014,
pp. 61{66.

[27] W. Han, H. Hu, Z. Zhao, A. Douge, G.-J. Ahn, K.-C. Wang, J. Deng,
State-aware network access management for software-de ned networks, in:
Proceedings of the 21st ACM on Symposium on Access Control Models
and Technologies, ACM, 2016, pp. 1{11.

63

1335

1340

1345

1350

1355

[28] N. Katta, M. Hira, C. Kim, A. Sivaraman, J. Rexford, Hula: Scalable
load balancing using programmable data planes, in: Proceedings of the
Symposium on SDN Research, ACM, 2016, p. 10.

[29] F. Nife, Z. Kotulski, Multi-level stateful rewall mechanism for software
de ned networks, in: International Conference on Computer Networks,
Springer, 2017, pp. 271{286.

[30] X. Jin, X. Li, H. Zhang, R. Sougk, J. Lee, N. Foster, C. Kim, |. Stoica,
Netcache: Balancing key-value stores with fast in-network caching, in:
Proceedings of the 26th Symposium on Operating Systems Principles,
2017, pp. 121{136.

[31] G. Bianchi, M. Bonola, A. Capone, C. Cascone, OpensState: programming
platform-independent stateful OpenFlow applications inside the switch,
ACM SIGCOMM Computer Communication Review 44 (2) (2014) 44{51.

[32] S. Goswami, N. Kodirov, C. Mustard, I. Beschastnikh, M. Seltzer, Parking
packet payload with p4, arXiv preprint arXiv:2006.05182.

[33] M. He, A. Basta, A. Blenk, N. Deric, W. Kellerer, PANFV: An NFV
architecture with exible data plane recon guration, in: 2018 14th In-
ternational Conference on Network and Service Management (CNSM),
IEEE, 2018, pp. 90{98.

[34] C. Kim, A. Sivaraman, N. Katta, A. Bas, A. Dixit, L. J. Wobker, In-band
network telemetry via programmable dataplanes, in: ACM SIGCOMM,
2015.

[35] K.-T. Cheng, A. S. Krishnakumar, Automatic functional test generation
using the extended nite state machine model, in: 30th ACM/IEEE De-
sign Automation Conference, IEEE, 1993, pp. 86{91.

[36] OpenState softswitch, https://github.com/OpenState-SDN/
ofsoftswitch1l3 , Access on: 2019.

64

1360

1365

1370

1375

1380

[37] G. Bianchi, M. Bonola, A. Capone, C. Cascone, S. Pontarelli, Towards
wire-speed platform-agnostic control of OpenFlow switches, in: arXiv
preprint arXiv:1409.0242, 2014.

[38] S. Pontarelli, M. Bonola, G. Bianchi, A. Capone, C. Cascone, Stateful
OpenFlow: Hardware proof of concept, in: 2015 IEEE 16th International
Conference on High Performance Switching and Routing (HPSR), IEEE,
2015, pp. 1{8.

[39] OpenFlow 1.3 software switch, https://cpgd.qgithub.io/
ofsoftswitch13/ , Access on: 2019.

[40] N. Zilberman, Y. Audzevich, G. A. Covington, A. W. Moore, NetFPGA
SUME: Toward 100 Gbps as research commodity, IEEE Micro 34 (5)
(2014) 32{41.

[41] Open vswitch, https://www.openvswitch.org/ , Access on: 2016.

[42] Onetcard, https://www.xilinx.com/products/boards-and-kits.

html, Access on: 2019.

[43] S. Smolka, S. Eliopoulos, N. Foster, A. Guha, A fast compiler for netkat,
ACM SIGPLAN Notices 50 (9) (2015) 328{341.

[44] M. Shahbaz, N. Feamster, The case for an intermediate representation for
programmable data planes, in: Proceedings of the 1st ACM SIGCOMM
Symposium on Software De ned Networking Research, ACM, 2015, p. 3.

[45] M. Honda, F. Huici, G. Lettieri, L. Rizzo, mswitch: a highly-scalable,
modular software switch, in: Proceedings of the 1st ACM SIGCOMM
Symposium on Software De ned Networking Research, ACM, 2015, p. 1.

[46] Linux socket ltering aka berkeley packet lter (BPF), https://www.
kernel.org/doc/Documentation/networking/filter.txt , Access on:
20109.

65

1385

1390

1395

1400

1405

1410

[47]

[48]

[49]

[50]

[51]

[52]

(53]

[54]

p4lang/behavioral-model, https://github.com/p4lang/

behavioral-model , Access on: 2019.

M. Shahbaz, S. Choi, B. Pfa, C. Kim, N. Feamster, N. McKeown, J. Rex-

ford, PISCES: A programmable, protocol-independent software switch, in:
Proceedings of the 2016 ACM SIGCOMM Conference, ACM, 2016, pp.
525{538.

P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown, M. Izzard,
F. Mujica, M. Horowitz, Forwarding metamorphosis: Fast programmable
match-action processing in hardware for SDN, ACM SIGCOMM Com-
puter Communication Review 43 (4) (2013) 99{110.

S. Chole, A. Fingerhut, S. Ma, A. Sivaraman, S. Vargaftik, A. Berger,
G. Mendelson, M. Alizadeh, S.-T. Chuang, |. Keslassy, et al., dRMT:
Disaggregated programmable switching, in: Proceedings of the Conference

of the ACM Special Interest Group on Data Communication, ACM, 2017,
pp. 1{14.

H. Wang, R. Souk, H. T. Dang, K. S. Lee, V. Shrivastav, N. Foster,
H. Weatherspoon, PAFPGA: A rapid prototyping framework for P4, in:
Symposium on SDN Research, 2017.

S. Ibanez, G. Brebner, N. McKeown, N. Zilberman, The P4->NetFPGA
work ow for line-rate packet processing, in: Proceedings of the 2019
ACM/SIGDA International Symposium on Field-Programmable Gate Ar-
rays, ACM, 2019, pp. 1{9.

The P4 Ilanguage specication version 1.1.0, http://p4d.org/
wp-content/uploads/2016/03/p4_v1.1.pdf , Access on: 2016.

OpenState demo, http://www.beba-project.eu/presentations/

2015-openstate-live-demo.pdf , Access on: 2015.

66

	Introduction
	Overview of Stateless and Stateful Data Plane
	Stateless Data Plane
	Stateful Data Plane
	Stateless vs Stateful

	Existing Platforms and Applications for Stateful Data Plane
	Stateful Data Plane Platforms
	OpenState
	OPP
	FAST
	SNAP
	SDPA
	FlowBlaze

	Stateful Data Plane Compilers
	P4
	DOMINO
	XL

	Applications Based on Stateful Data Plane
	SPIDER
	Static NAT
	HULA
	HashPipe
	Dapper
	INT

	Remarks

	Basic Components of Stateful Data Plane
	State Classification
	Per-packet State
	Per-flow State
	Global State
	Discussions

	State Machines
	State Machine Abstraction
	State Machine Classification
	Remarks

	State Operations
	Extensible Match-action Table
	Control Flow

	Schedule and Optimization Technologies
	Consistency
	Intra-switch Consistency
	Inter-switch Consistency

	Migration
	Composition optimization
	Placement
	State Placement
	Logic Placement

	Remarks

	Implementation Considerations for Stateful Data Plane
	Available Implementations
	Hardware Limitations
	Compute capacity
	Memory Capacity

	Remarks

	Future Research Discussions
	Conclusions
	Acknowledgement

