Understanding the Performance of Low Power Raspberry Pi Cloud for Big Data


Nowadays, Internet-of-Things (IoT) devices generate data at high speed and large volume. Often the data require real-time processing to support high system responsiveness which can be supported by localised Cloud and/or Fog computing paradigms. However, there are considerably large deployments of IoT such as sensor networks in remote areas where Internet connectivity is sparse, challenging the localised Cloud and/or Fog computing paradigms. With the advent of the Raspberry Pi, a credit card-sized single board computer, there is a great opportunity to construct low-cost, low-power portable cloud to support real-time data processing next to IoT deployments. In this paper, we extend our previous work on constructing Raspberry Pi Cloud to study its feasibility for real-time big data analytics under realistic application-level workload in both native and virtualised environments. We have extensively tested the performance of a single node Raspberry Pi 2 Model B with httperf and a cluster of 12 nodes with Apache Spark and HDFS (Hadoop Distributed File System). Our results have demonstrated that our portable cloud is useful for supporting real-time big data analytics. On the other hand, our results have also unveiled that overhead for CPU-bound workload in virtualised environment is surprisingly high, at 67.2%. We have found that, for big data applications, the virtualisation overhead is fractional for small jobs but becomes more significant for large jobs, up to 28.6%.