
Understanding The Network I/O Performance of
Heterogenous Virtualisation in Cloud Data Centres

Technical Report

Fung Po Tso∗
∗Department of Computer Science, Liverpool John Moores University, L3 3AF, UK

Email: p.tso@ljmu.ac.uk

Abstract—With the advent of virtualisation, virtual machines
(VMs) running on under-utilised physical servers can be con-
solidated and reassigned into fewer hosts to improve resource
utilisation and reduce operational cost. Alongside a number
of existing hypervisor-based virtualisation technologies such as
Xen, KVM and VMWare, container-based virtualisation received
considerable attention in recent years. While this type of vir-
tualisation trades isolation for efficiency, the performance of
collocating both types of virtualisation within a Cloud Data
Centre remains largely unknown. In this paper, we present a
performance measurement study of network I/O applications for
both types of virtualisation over a Cloud environment. We focus
on the performance impact of collocating applications and various
virtualisation techniques in a virtualised Cloud Data Centre in
terms of network throughput. We show that some types of VMs
are more vulnerable to interference which leads to performance
degradation of 30%. We also show that collocation of VMs of
different types can improve performance by up to 25%.

Keywords—Virtualisation, Hypervisor, Container, Virtualised
I/O Performance, Docker, Virtualisation Overhead

I. INTRODUCTION

A hypervisor or Virtual Machine Monitor (VMM), such
as KVM, Xen and VMWare, is a popular mechanism for
implementing virtualisation in a Cloud environment. Recently,
another type of virtualisation technology, container-based (or
OS-based) virtualisation, has attracted significant attention by
the industry. Since it was released as an open-source project
in March 2013, Docker [1], a Linux Container (LXC)-based
virtualisation mechanism, has rapidly risen to the second most
popular open-source project in cloud computing [2], and has
received interest from major Cloud operators [3][4].

As their efficiency has great impact on the overall utilisa-
tion of the virtualised infrastructure, the performance of hyper-
visors in isolating and sharing resources has been scrutinised
to a great extent. However, existing work either only examines
homogeneous environments in which only one hypervisor is
used, or only employ a simple setup to compare the perfor-
mance of hypervisor-based VMs and containers [5][6] [7].
With the growing trend of heterogeneous Cloud environments
such as increased popularity of federated clouds [8][9][10], we
argue that it is very likely for Cloud operators to collocate
different types of VMs to exploit their resource utilisation
characteristics. For example, paravirtualised VMs, fully vir-
tualised VMs, and containers may be collocated to exploit
efficiency and performance isolation. Nevertheless, existing

literature provides only limited insight for such heterogeneous
collocation.

In this paper, we put the emphasis on the performance
measurement and analysis of network-intensive applications
with heterogeneous virtualisation in a heterogeneous virtu-
alised Cloud. To gain insight and full understanding of re-
source sharing, isolation, and efficiency, we argue that it is
important to conduct an in-depth study of applications running
on multiple heterogenous VMs (i.e. paravirtualised VMs, fully
virtualised VMs, and containers) hosted on a single physical
machine. Such measurements can offer deeper understanding
of the key factors for effective resource sharing amongst
different applications running in the Cloud. We focus on
network I/O applications in this measurement study since they
constitute the primary Cloud workload, and since network
utilisation is the key performance contributor to the overall
cloud performance[11].

We dedicate our measurement study to answer two ques-
tions in relation to collocating heterogeneous VMs: “How well
can different combinations of VMs perform if they are put on
the same physical host?” and “Is container virtualisation more
efficient in a shared virtualised environment?”

Through our measurement study, we show the impact
of their network I/O performance by collocating multiple
containers with other types of VMs. We trust the findings
from out study will help Cloud operators to effectively exploit
and manage their virtual environments to meet diverse require-
ments through running different VMs to suit their customers’
needs.

In summary, the contributions of this paper are as follows:

• We performed an extensive experimental study on collo-
cating heterogenous VMs and applications in a physical
host.

• We find that a fully virtualised VM is as efficient as a
paravirtualised VM in terms of network I/O applications.

• We reveal that running containers inside hypervisor-based
VMs suffers significant performance impairment despite
better isolation.

• We demonstrate that collocation of different VMs pro-
vides distinctive performance results. In all combinations
we tested, we found that collocating a fully virtualised
VM and a paravirtualised VM yields the best performance
results.

The remaining of this paper is organised as follows:



Section I presents background on virtualisation technologies
that inspire our performance measurement work. We describe
our testbed settings, test environment and performance metrics
in Section III followed by discussion and analysis of baseline
results from running a single VM out of all types of VMs
under test in Section IV. We present, compare and contrast
more extensively the results that include running multiple
homogeneous and heterogeneous VMs on the same physical
host in Section V and Section VI, respectively. We survey
related work in Section VII, and Section VIII concludes our
paper.

II. BACKGROUND

A. Virtualisation Technologies

There are a variety of VM architectures ranging from the
hardware such as Intel’s virtualisation Technology (or Intel
VT) up the full software including hardware abstraction layer
VMs such as Xen [12], KVM, VMware, system call layer VMs
such as Linux VServer, OpenVZ and Linux Container (LXC).

1) Hypervisor-based virtualisation: The hypervisor is a
software that provides the underlying system hardware abstrac-
tion through which multiple guest operating systems (OS) are
allowed to run concurrently on a single host system. There are
two main virtualisation methods [13]. The first one allows to
run any kind of OS and emulates all the necessary hardware
to create an impression that the guest system is running on
a physical machine. We refer this type of virtualisation to as
hardware assisted virtualisation and VMs on top of which are
hardware virtual machines (HVMs). Second approach is to run
a modified guest operating system, which is “aware” of being
virtualised. The latter, called paravirtualisation, is much more
efficient, but limited to some operating systems only [12]. We
refer to VMs running atop as PVM.

Both full and para-virtualisation are supported by Xen [14].
To make the IO operations as fast as possible, Xen introduced
also paravirtualised device drivers. Each guest domain, unpriv-
ileged domains (DomU) has the front-end drivers installed.
Such drivers, provided with Xen, are communicating with the
back-end drivers running on a special driver domain (Dom0).
In comparison, a HVM does not have the PV drivers located
within the virtual machine; instead a special daemon is start
ed for each HVM Guest in Domain 0, Qemu-dm. Qemu-dm
supports the Domain U HVM Guest for networking and disk
access requests [15].

When a packet arriving on the physical device NIC is
routed via the driver to the bridge and to the virtual interface.
The back-end then notifies the front-end of a packet arrival,
which is transmitted across the virtual interface to the front-
end driver in the guest VM. The newest version of Xen uses
the credit scheduler [16]. It assigns two parameters for each
domain - weight and cap. The weight defines how much
CPU time a domain gets comparing to other virtual machines.
The cap parameter describes the maximum amount of CPU a
domain can consume. This two parameters are then used to
calculate the number of credits which determine wether a VM
can be scheduled.

2) Container-based virtualisation: A container-based sys-
tem provides a shared, virtualised OS image consisting of a

root file system, a shared set of system libraries and executa-
bles.Each VM can be booted, shut down, and rebooted just
like a regular operating system. Resources such as disk space,
CPU guarantees, memory, etc. are assigned to each VM when
it is created, yet often can by dynamically varied at run time.
To applications and the user of a container, the VM appears
just like a separate host [17].

The resource management is only allowed via cgroups, one
of Linux’s modern kernel features. Thus, LXC uses cgroups
to define the configuration of network namespaces and CPU
sharing. The process control is also accomplished by cgroups,
which has function of limiting the CPU usage and isolating
containers and processes. For example, a process has a weight
of 512 will have twice as much CPU time than the one that has
a weight of 256. Like hypervisor-based virtualisation, network
access from inside container is provided by one or multiple
virtual network bridges.

III. EXPERIMENTAL SETUP

We describe in detail our testbed, methodology and perfor-
mance metrics used to evaluate different combinations of tests
in this section.

We conduct all experiments on a server and six clients
each has Intel i7-3770 3.4GHz (4 cores, 8 threads) CPU and
16GB RAM. We used Ubuntu 14.04 Server distribution and
Xen 4.4.0 with default credit scheduler for server and Ubuntu
14.04 desktop distribution for clients respectively. Dom0 and
other guest domains have the same weight (i.e. 256) by default.
This physical server hosts multiple VMs. Each VM is running
Apache web server to process web requests from clients. Each
client uses httperf to generates web requests for pulling web
documents of size 1KB, 4KB, 10KB, 50KB, 70KB and 100KB
from servers hosted within VMs. These file sizes are chosen
because traffic in cloud data centre is comprised of 99% small
mice flows and 1% large flows [18].

In order to recreate heterogenous VM environment, we
tested the following five types of virtualisation scenarios:

• Hardware Virtual Machine (HVM): A hardware assisted
virtualisation that fully virtualise the physical host.

• Paravirtualised Virtual Machine (PVM): A modified ker-
nel exposes software interfaces, as if they are hardware
interfaces, to virtual machines.

• Container (CON): A LinuX Container (LXC) based vir-
tualisation.

• Container inside HVM (HVMCON) and PVM (PVM-
CON): A technique used to protect and separate contain-
ers by running them inside HVM and PVM1.

All HVMs and PVMs have a weight of 256 share so that they
will have equal share to use physical CPUs. Container is also
set to use 256 (out of 1024) to limit to only 25% of CPU
usage as compared to two vCPUs out of eight vCPUs used
for HVMs and PVMs. However, when container is running
with VMs, its share is set to 1024 meaning it can use 100%

1Linux container faces the criticism of being less secure than VM. In
order to protect and isolate container while still leveraging its usefulness for
quick environment deployment, some engineers opt to run container within
virtual machines [19].



HVM PVM CON HVMCON PVMCON Dom0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
P

U
 U

ti
li
s
a

ti
o

n

 

 

1KB

4KB

10KB

30KB

50KB

70KB

100KB

(a)

HVM PVM CON HVMCON PVMCON Dom0
0

2

4

6

8

10

12
x 10

4

N
e

tw
o

rk
 T

h
ro

u
g

h
p

u
t 

(K
B

/s
)

 

 1KB

4KB

10KB

30KB

50KB

70KB

100KB

(b)

HVM PVM CON HVMCON PVMCON Dom0
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

S
e

rv
e

r 
T

h
ro

u
g

h
p

u
t 

(r
e

q
/s

)

 

 
1KB

4KB

10KB

30KB

50KB

70KB

100KB

(c)

Fig. 1: Results for single guest domain: (a) CPU utilisation, (b) Network throughput and (b) Server throughput.

Dom0 1KB Dom0 100KB DomU 1KB DomU 100KB
10

0

10
2

10
4

10
6

10
8

10
10

C
P

U
 T

im
e
 (

µ
s
/e

x
)

 

 

HVM

PVM

CON

HVMCON

PVMCON

(a)

Dom0 1KB Dom0 100KB DomU 1KB DomU 100KB
10

0

10
1

10
2

10
3

10
4

C
P

U
 C

o
u
n

t 
(e

x
/s

)

 

 
HVM

PVM

CON

HVMCON

PVMCON

(b)

Fig. 2: Results for single guest domain: (a) CPU time per
execution and (b) Execution count per second.

of both HVM and PVM’s 2vCPUs. In this paper, we use VM
interchangeably with container unless otherwise stated.

We measure and collect the following metrics, mainly from
httperf [20], Xentop [21] and Xenmon [22], to benchmark VM
performance:

• Server throughput (#req/sec). It measures the maximum
number of HTTP requests for download specific web
documents has been served by HTTP server per second.

• Network throughput (KB/sec). It measures actual intensity
of network traffic has been exchanged between HTTP
server and client.

• CPU Utilisation. It measures how CPU time slices are
shared among VMs and how VMs use their vCPUs under
given workload.

• Execution per second (#exe/sec). It measures how often
a domain has been scheduled on a CPU over a period of
one second.

• CPU time per execution (µs/exe). It measures the average
CPU time is allocated to a running VM (including Dom0)
in microsecond. Xen’s Credit scheduler uses 30 ms time
slices for CPU allocation.

IV. BASELINE RESULTS

We consider server which has only one running guest do-
main or container as baseline results, assuming CPU resource
is fairly shared among all vCPUs, meaning that two vCPUs
guest domain will use only 25% of the physical CPU which
is mapped to eight vCPUs. In this set of experiments, we first
run one guest domain (thereafter in this paper we also use

guest domain to include Docker container) at a time and apply
one type of workload. For every type of workload, the clients
initially applied 100 requests/second, and gradually increase
the intensity by 100 requests/second each round until server
throughput starts to fall off slightly as an increasing amount
of time is spent in the kernel to handle network packets for
calls that will fail eventually (due to client timeouts). We also
run the experiments over Dom0, as it has the privilege to gain
access to all system resource, to provide a reference point for
the efficiency of running only one VM next to it. By default,
Dom0 has access to all eight vCPUs.

Fig. 1 and Fig. 2 depict the results for running single
guest domain in terms of CPU Usage, server and network
throughput respectively. At the first glance, we can clearly
observe from Fig. 1a that CPU utilisation for 1KB, 4KB
and 10KB (small file) workloads are substantially higher than
30KB, 50KB, 70KB and 100KB (large file) workloads. While
the same trends hold for HVMCON and PVMCON, their CPU
utilisation for small workloads is 5% to 10% lower than other
VMs but is 5%-15% higher in large workloads. We will see
below that this phenomenon is due to both of them having
smaller server throughput for small file workloads and equally
high throughput for large file throughput for 1KB and 100KB
workloads respectively when compared with HVM, PVM and
CON. We can also see that CON (container), which runs inside
Dom0, achieves comparable CPU utilisation with Dom0 for
large workloads and only has 10%-15% higher for smaller
workloads, and this is also because CON only uses 256 CPU
share compared with that of 1024 for Dom0.

On the other hand, Fig. 1b demonstrates that network
throughput for large files workload is much greater than that
of small files. Fig. 1c confirms that small files workload is
CPU bound whilst large files workload is network bound.
Nevertheless, we also observed that container, albeit following
the similar trend, consistently uses less CPU than other types
of VMs by 30% on average across all workloads and still
results in slightly better server and network throughput in CPU
bond workload. Meanwhile, we have also seen that HVM is as
efficient as PVM in all categories, contradicting to a common
understanding that “fully virtualised VM is less efficient than
paravirtualised VM”.

More interestingly, if one wants to better protect their
containers from “root break-out” [19] and run them inside
HVM or PVM, i.e., HVMCON or PVMCON in our tests, we



HVM PVM CON HVMCON PVMCON
0

0.2

0.4

0.6

0.8

1

R
a

ti
o

 o
f 

S
e

rv
e

r 
T

h
ro

u
g

h
p

u
t

 

 

1KB

4KB

10KB

30KB

50KB

70KB

100KB

(a)

Dom0 1KB Dom0 100KB DomU 1KB DomU 100KB
0

0.2

0.4

0.6

0.8

1

1.2

1.4

N
o

rm
a

li
s
e

d
 C

P
U

 T
im

e

 

 

HVM

PVM

CON

HVMCON

PVMCON

(b)

Dom0 1KB Dom0 100KB DomU 1KB DomU 100KB
0

0.2

0.4

0.6

0.8

1

1.2

1.4

N
o

rm
a

li
s
e

d
 E

x
e

c
u

ti
o

n
 C

o
u

n
t

 

 

HVM

PVM

CON

HVMCON

PVMCON

(c)

Fig. 3: Results for collocating one active guest domain and three idle guest domains: (a) Normalised server throughput, (b)
Normalised CPU execution time and (c) Normalised execution count.

have seen a significant drop in server throughput at 26% and
29% respectively. This implies that the tradeoff is significant
as while CPU utilisation is as much as HVM and PVM.
As discussed previously, container is comparably efficient as
native machine while running inside Dom0. The prominent
performance degradation from running container inside HVM
and PVM (i.e. HVMCON and PVMCON) can be attributed to
the inefficiency of running a network namespace (implemented
by LXC) that provides an entire network subsystem on top
of virtualised network stack. Packets coming in and out of
HVMCON and PVMCON will have to traverse through an
additional layer of virtual bridge between container and host
VM. We however also note that during our experiments we
found that installing Docker inside HVM and PVM will
decrease nf conntrack to a smaller value so that many TCP
connection dropped and timeouted. We had to increase this
value in order to carry on experiments. This implies that the
underneath implementation could also affect the performance.
However, discussion of Docker’s implementation in greater
detail is outside the scope of this paper.

Fig. 2 exhibit more details about CPU usage for 1KB and
100KB workloads respectively for all VMs. At the first glance,
we can see from Fig. 2a that for both types of workloads Dom0
has received similar amount CPU time per execution, implying
that both workloads have imposed similar processing demand
on Dom0. However it demonstrates distinct patterns for guest
VMs as they spend much greater amount of time executing
small workload than large workload. Clearly, by correlating
results from Fig. 2b we can see that VMs serving small file
workloads have less number of scheduled execution per second
as a result of having longer execution time per scheduled time.
This implies that there is an efficient work aggregation of small
tasks in Dom0 that results longer execution but less frequent
CPU scheduling in guest domains.

In addition, Fig. 2 also reveals two interesting findings.
First, with slightly higher CPU execution time but less frequent
CPU schedule, container yields even better server throughput
than HVM and PVM. This finding implicitly reflects good effi-
ciency achieved by container. Second, with the same allocated
CPU time but significantly lower CPU execution count, PVM
achieve better server and network throughput than HVM. This
is because both Dom0 and PVM are “aware” of the existence
of each other, so overhead can be substantially reduced as
communication only happens over special faster I/O (memory

flipping) channel.

In summary, through this set of experiments, we show
that container is the most efficient amongst all VMs. HVM is
surprisingly as efficient as PVM when dealing with both small
large file workloads although it is fully virtualised. However,
running container inside HVM & PVM is the least efficient
as additional layer of virtualisation brings significant overhead
when processing small file workloads.

V. MULTIPLE HOMOGENEOUS VMS

In this section, we will collocate multiple guest VM on a
physical host to study how will idle and active VMs will affect
neighbouring active VMs running on the same physical host.

A. Impact of Idle Domains

In this set of experiments we collocated one active domain
with up to three idle domains of the same type. We are
interested to understand that how would active domains be
affected by idle domains. We first stressed the active domain
to find maximum server throughput and repeat the same
experiment by adding an extra idle domain. For the ease of
discussion, we only present the results for 1KB and 100KB
workload they are the most representative workloads for small
and large file workloads respectively.

Fig. 3 shows the results for this set of experiments. The
results are normalised with respect to results in Fig. 1 and
Fig. 2 to give a better comparison.

From Fig. 3a, we can see that server’s throughput for
50KB, 70KB and 100KB workload remain as high as single
domain. Unlike CPU slicing, the network bandwidth is shared
among all VMs through a virtual bridge. In other words,
all VMs contend for network bandwidth at all times. When
other idle instances are not using network bandwidth, the
active one can take all, although virtualisation overhead can
hurt the throughput. Nonetheless, these workloads are limited
primarily by network bandwidth rather than CPU capacity.
In this circumstance the server’s throughput can sustain as a
result of no network contention. In contrast, we can see that
impairment varies from 10% to 20% in 1KB, 4KB, 10KB
and 30KB workloads. This is because driver domain (Dom0)
will still have to serve idles VMs even though they are in
the blocked status while listening on the TCP connections.



CPU Utilisation Server T’put Network T’put
0

0.2

0.4

0.6

0.8

1

1.2

1.4

N
o

rm
a

lis
e

d
 V

a
lu

e
s
 (

D
o

m
U

 2
/D

o
m

U
 1

)

 

 HVM

PVM

CON

HVMCON

PVMCON

(a)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

5000

10000

15000

Ratio of Traffic Intensity

S
e

rv
e

r 
T

h
ro

u
g

h
p

u
t 

(r
e

q
/s

e
c
)

 

 

HVM

PVM

CON

HVMCON

PVMCON

(b)

Time DomU1 Time DomU2 Count DomU1 Count DomU2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

N
o

rm
a

li
s
e

d
 V

a
lu

e
s

 

 
HVM

PVM

CON

HVMCON

PVMCON

(c)

CPU Utilisation Server T’put Network T’put
0

0.2

0.4

0.6

0.8

1

1.2

1.4

N
o

rm
a

lis
e

d
 V

a
lu

e
s
 (

D
o

m
U

 2
/D

o
m

U
 1

)

 

 
HVM

PVM

CON

HVMCON

PVMCON

(d)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
200

400

600

800

1000

1200

1400

Ratio of Traffic Intensity

S
e

rv
e

r 
T

h
ro

u
g

h
p

u
t 

(r
e

q
/s

e
c
)

 

 

HVM

PVM

CON

HVMCON

PVMCON

(e)

Time DomU1 Time DomU2 Count DomU1 Count DomU2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

N
o

rm
a

li
s
e

d
 V

a
lu

e
s

 

 
HVM

PVM

CON

HVMCON

PVMCON

(f)

Fig. 4: Results for collocating two active guest domains with identical applications: (a) Comparison of average CPU utilisation,
server throughput and network throughput for (a) 1KB workload and (d) 100KB workload; Comparison of server throughput
under various traffic intensity for (b) 1KB workload and (e) 100KB workload; and Comparison of allocated CPU time and
number of CPU count for (c) 1KB workload and (f) 100KB workload.

Nevertheless, the figure shows that that CON remains as the
most efficient while HVMCON and PVMCON continue to be
the least efficient VMs.

Next, we will examine the details of their CPU usage.
Fig. 3b and Fig. 3c depict the normalised CPU execution time
and count with respect to the results in Section IV for 1KB
and 100KB tests.

Obviously, Fig. 3b demonstrates that in all tests both Dom0
and active DomU generally gets less CPU execution time for
both 1KB and 100KB workloads as a result of I/O time-
sharing and the reduction is in between 5% to 43%. Similarly
in Fig. 3c, the CPU count for both Dom0 and active DomUs
decreases. There are a number of factors contribute to above
observations in decrease of both CPU time and count: First, it
is due to the execution of timer tick for the idle guest domain
and the context switch overhead. Second the processing of
network packets such as address resolution protocol (ARP)
packets, which causes I/O processing in DomU [5].

As oppose to decrease of CPU time and count, there
are a few exceptions: First, container persistently gets more
CPU time and count for both 1KB and 100KB workloads.
Such behaviour is actually consistent with results discussed in
previous section. In Xen, Dom0 is scheduled to use CPU as the
same way as it schedules other VMs. This means that running
container inside Dom0, its performance is also limited by the
amount of time Dom0 is scheduled to run. In the meantime,
Dom0 has to serve another three guest domain for potential
I/O access. So it is scheduled to run longer and more often.
Second, Dom0 for HVM has CPU execution count in between
5% to 20% greater than their counterparts in single active VM

scenarios as a result of the fact that the Dom0 get remarkably
smaller CPU time.

B. Impact of Active Neighbours

1) Identical Workload: Undoubtedly, a physical server will
run multiple active VMs in order to better utilise data centre
resource. The cloud operator can benefit from reduced oper-
ating expenditure. However, cloud users may worries about
the performance of their applications running within sharing
machine. In order to get better understanding how different
types of VMs will share a physical server, we first design a
set of experience to apply increasing workload intensity for
all types of workload to two active VMs serving the same
workload. In this set of experiments. Two identical VMs were
created to run a Web server each. The clients were instructed
to send HTTP request for all types of workloads with increased
intensity which starts from 10% and increment by 10% in each
round. The results are demonstrated in Fig. 4.

We first examine the results for 1KB workload as shown in
Fig. 4a, Fig. 4b and Fig. 4c. Fig. 4a compares CPU utilisation,
server and network throughput between two active VMs and
demonstrates that all types of VMs can achieve fairly good
fairness across all three metrics, deviating from each other
only by 5% at most. Moreover, aggregate server throughput
depicted in Fig. 4b reveals some interesting results: First, most
pair of VMs reach their peak throughput at 80% or 90% of full
workload intensity and then will fall slightly. In comparison,
CON pair reach their peak throughput at 80%. Second, PVM
surpasses CON as the most efficient in this test, serving 14,766
requests per second, resulting 13% higher throughput than
single VM’s test (in Fig. 1c). Following PVM, HVM also gain



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1000

2000

3000

4000

5000

6000

7000

8000

9000

Ratio of Traffic Intensity

S
e

rv
e

r 
T

h
ro

u
g

h
p

u
t 

(r
e

q
/s

e
c
)

 

 
1k:1k

1k:4k

1k:10k

1k:30k

1k:50k

1k:70k

1k:100k

(a)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Ratio of Traffic Intensity

S
e

rv
e

r 
T

h
ro

u
g

h
p

u
t 

(r
e

q
/s

e
c
)

 

 
1k:1k

1k:4k

1k:10k

1k:30k

1k:50k

1k:70k

1k:100k

(b)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Ratio of Traffic Intensity

S
e

rv
e

r 
T

h
ro

u
g

h
p

u
t 

(r
e

q
/s

e
c
)

 

 
1k:1k

1k:4k

1k:10k

1k:30k

1k:50k

1k:70k

1k:100k

(c)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

1000

2000

3000

4000

5000

6000

7000

S
e

rv
e

r 
T

h
ro

u
g

h
p

u
t 

(#
re

q
/s

e
c
)

Ratio of Workload

 

 
1k:1k

4k:1k

10k:1k

30k:1k

50k:1k

70k:1k

100k:1k

(d)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

1000

2000

3000

4000

5000

6000

7000

8000

S
e

rv
e

r 
T

h
ro

u
g

h
p

u
t 

(#
re

q
/s

e
c
)

Ratio of Workload

 

 
1k:1k

4k:1k

10k:1k

30k:1k

50k:1k

70k:1k

100k:1k

(e)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

1000

2000

3000

4000

5000

6000

7000

S
e

rv
e

r 
T

h
ro

u
g

h
p

u
t 

(#
re

q
/s

e
c
)

Ratio of Workload

 

 
1k:1k

4k:1k

10k:1k

30k:1k

50k:1k

70k:1k

100k:1k

(f)

Fig. 5: Results for collocating two active VMs with different different workload: server throughput for 1KB workload for (a)
HVM, (b) PVM, (c) Container, (d) Container in HVM and (e) Container in PVM

a increase 13% increase in their aggregate server throughput
when compared with single VM. In comparison, CON’s peak
throughput falls 3% behind single or collocating with idle
instances. This is because, as it is shown in Fig. 4c, both of
CON instances are scheduled to run more often with higher
CPU time, which in turn leads to contention in Dom0’s CPU
time. Hence a larger number of TCP connections (and thus
HTTP requests), although arrive the servers, are kept waiting
and eventually timeout. As a result, the overall performance
of both CON are impaired. In other words, comparing with
HVM and PVM, CON are more vulnerable to interference
from collocating neighbour.

In this test, collocating two PVMs with identical workload
result in the best performance. If we look at the allocated CPU
time and CPU execution count in the Fig. 4c and Fig. 4f more
closely, we can see that both PVM guest domains for 1KB
and 100KB get nearly equal share of CPU. As a result, I/O
channels between Dom0 and DomU domains are shared fairly
to avoid contention on the network I/O (whose access is not
scheduled).

Next, we examine the results for 100KB workload. First
of all, all types of VMs achieve good fairness except CON
in server’s throughput, as shown in Fig. 4d and peaks their
throughput at 80% or 90%, as shown in Fig/ 4e. Similar
imbalance for CON in terms of CPU time and count is also
observed in Fig. 4f. However, it is not reflected in server’s
throughput result in Fig. 4e since this type of workload is
network-bound, and traffic already reaches maximum network
link capacity when throughput is at peaks.

It is also worth mentioning that HVMCON and PVMCON
continue to suffer from extra virtualisation overhead and thus
have poorest results among all types VMs. Therefore, we omit

the results from these two types of VMs in the rest of this
section.

2) Different Workload: When a virtualised cloud is shared
by many tenants around the world, it is more likely that
VMs that belong to different tenants will be running distinctly
different tasks - some are CPU bound whilst other are network
bound. In this set of experiments, we will study the impact of
collocating network (e.g., 100KB) and CPU (e.g., 1KB) bound
task for all types of VMs. We started by dedicating one VM
to serve only 1KB workload and neighbour serving varying
(increasing) file size workload. We first set the ratio of traffic
intensity to 10% and increase it by 10% at the beginning of
next round. Fig. 5 presents our experiment results.

Fig. 5a, Fig. 5b and Fig. 5c demonstrate the server
throughput for HVM, PVM and CON serving 1KB workload
respectively. We used 1KB:100KB to denote that current VM
is serving 1KB workload while neighbour is serving for 100KB
workload. From these figures we can see that as traffic inten-
sifies, server’s throughput starts to increase. In all scenarios,
1KB:1KB hits the peaks at earliest time and either remains
or starts to fall. Particularly in HVM a prominent plummet is
observed. In contrast, 1KB:(50,70,100)KB curves all peaks at
100% workload intensity, while 1KB:100KB often gives best
throughput (1KB:70KB in PVM), giving throughput at 9,280
requests per second. Comparing these results with Fig. 4b we
can see that 1KB:100KB can achieve 28% improvement in
performance.

In the meantime, Fig. 5d, Fig. 5e and Fig. 5f depict the re-
sults from their neighbouring VMs respectively. These figures
exhibit that no workload suffer sudden drop in their through-
put, meaning that interference from neighbour is less severe.
Similarly, when serving 100KB workload (100KB:1KB), the



server reaches a throughput of 981 request per second, an
improvement of 49% as compared with results in Fig. 4e

Intuitively, performance deteriorates when tasks are con-
tenting for the same hardware resource as it will create either
congestion or too frequent context switching (low yield). By
collocating network and CPU bound tasks, we can minimise
potential resource contention and thus improve performance.

VI. MULTIPLE HETEROGENEOUS VMS

An important factor to use virtualisation in the cloud is to
leverage machine heterogeneity. With advance of virtualisation
technologies, operators deploy a variety of VMs in their cloud
to suit their customers’ needs. Often, technologies used to
implement these VMs are distinctively different and thus is
difficult to predict their performance in advance if they’re col-
located and share the same physical resource. In this section,
we designed a set of experiments to collocate different types
of VM on the same physical host to study their operational
performance.

From Sec. V-B we know that by collocating network
and CPU bound workload, significant degree of performance
improvement can be obtained but will see performance degra-
dation if both run CPU or network bound workload. Therefore,
in this set of experiment, we chose to collocating identical
workload in order to stress test candidate heterogenous VMs.
We started by sending 10% workload intensity to both servers
and then gradually increase the workload to 100%.

Fig. 6 illustrates aggregate server throughput results for
collocation of HVM and PVM, HVM and CON, and PVM
and CON respectively. Fig. 6 shows that throughputs gener-
ally grows with growing traffic intensity. For network bound
workloads, we have not observed significant improvement
because they are limited by network bandwidth. Surprisingly,
for CPU bound workload such as 1KB as shown in Fig. 6a,
aggregate throughput for HVM-PVM (i.e. collocation of HVM
and PVM) combination yields a throughput of 17,587 request
per second, a remarkable improvement of 25% and 21% com-
pared with HVM-HVM and PVM-PVM scenarios in which
interference and performance degradation happens.

In comparison, collocation of HVM and CON as shown
in Fig. 6b peaks at 80% workload intensity with a throughput
of 14,881 requests per second, i.e. 18% behind that of HVM-
PVM. Nevertheless, one might want to ask “will collocation
of best performing PVM and CON achieve best performance
among three candidate combinations?” Fig. 6c reveals that
PVM-CON has a peak throughput of 14,887 and is also 18%
behind that of HVM-PVM.

By comparing and contrasting results unveiled in Fig. 6,
more surprisingly, HVM-PVM turns out to be the most effi-
cient combination, greatly approximately the server throughput
achieved by running the Web server directly inside Dom0 as
shown in Fig. 1c.

We believe these results, although interesting and suprising,
reflect on the performance isolation achieved by different
implementation of virtualisation technology. As discussed in
Section II that HVM is realised upon qemu library and
only communicates with Xen’s Dom0 via dedicate quem-
dm daemon running inside the userspace of Dom0. Whereas
PVM communicates with Dom0 via shared I/O channels. By

using distinct communication channels, HVM and PVM do
not interfere with each other and thus can both achieve their
best performance which in turn resulting in the best aggregate
results.

But then, “How would HVM and PVM interfere with CON
when they are collocated?”. It is true that container does not
share any communication channels with HVM or PVM either,
but since it is run inside and thus share CPU time of Dom0
which also provides I/O (network and storage) access support
for DomU, it indirectly contends with DomU for CPU and
I/O.

VII. RELATED WORK

Recent years have seen significant research and develop-
ment in virtualisation technologies. As software growing com-
plex, it is difficult to understand and predict its performance
based on simple models.

There are a number of VMM (virtual machine moni-
tor) monitoring tools [21][22][23] developed for Xen [12].
Xentop [21] is able to displays information about the Xen
system and domain in real time. We used Xentop to collect
the utilisation of CPU, RAM and network of a particular
domain. In comparison, Xenmon [22] provides us insights into
CPU scheduling such gotten time, wait time and blocked time
respectively. While the combination of Xenmon and Xentop
enables us to perform many debugging or performance tracing
tasks. Tools like Xenoprof [23] supports system-wide coordi-
nated profiling in a Xen environment to obtain the distribution
of hardware events such as clock cycles, instruction execution,
TLB and cache misses, etc.

There is another direction of research on Xen’s perfor-
mance measurement. In [5] and [6], authors conducted large
scale experiments in order to understand the performance
interference between collocating VMs. While interesting, their
works only focus on PVMs and do not provide insights into
HVMs and recently proliferating LXC containers. On the
contrary, our paper covers five types of VMs that captures
most, if not all, of operational VM settings. Similarly, [7]
identifies clusters of applications that generate certain types
of performance interference through an experiment that uses
range of benchmarks and real-world traffic. On other hand,
despite its current popularity, there is only a handful of
work on performance analysis and measurement on container,
represented by [17] [24]. In [17], the authors present the
design and implementation of Linux-VServer followed by an
extensive performance comparison between hypervisor-based
VMs and container. Whereas, in [24] the authors evaluate the
performance container in HPC environment and compare it
with Xen. However, their results are limited to simple tests on
system I/O speed. Whereas our work studies extensively on
the performance of collocation of heterogenous VMs which
are the building blocks of today’s cloud environment.

VIII. CONCLUSION

In this paper, we conducted extensive performance mea-
surement on heterogeneous virtualised Cloud environments.
Our test results have shown that containers are an efficient
virtualisation technique. However, while collocating differ-
ent VMs, we found that containers are more vulnerable to



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Ratio of Traffic Intensity

S
e

rv
e

r 
T

h
ro

u
g

h
p

u
t 

(r
e

q
/s

e
c
)

 

 
1KB

4KB

10KB

30KB

50KB

70KB

100KB

(a)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

5000

10000

15000

Ratio of Traffic Intensity

S
e

rv
e

r 
T

h
ro

u
g

h
p

u
t 

(r
e

q
/s

e
c
)

 

 
1KB

4KB

10KB

30KB

50KB

70KB

100KB

(b)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

5000

10000

15000

Ratio of Traffic Intensity

S
e

rv
e

r 
T

h
ro

u
g

h
p

u
t 

(r
e

q
/s

e
c
)

 

 
1KB

4KB

10KB

30KB

50KB

70KB

100KB

(c)

Fig. 6: Collocation of heterogeneous VMs: (a) HVM and PVM (HVM-PVM), (b) HVM and CON (PVM-CON), and (c) PVM
and CON (PVM-CON)

performance interference from neighbours (i.e. HVM, PVM
& CON) than hypervisor-based virtualisation. Moreover, our
results have pointed out that running containers inside virtual
VMs brings extra network processing overhead and hence
suffers from severe performance degradation. Interestingly, we
have also found that, in terms of network I/O, HVM, which
is commonly believed to be less efficient than PVM [12],
is as efficient as PVM under most traffic conditions. More
surprisingly, we have shown that amongst all combinations of
virtual environments, running HVM alongside with PVM gives
the best performance results since it creates less network and
CPU contention.

REFERENCES

[1] “Docker,” 2014. [Online]. Available: https://www.docker.com
[2] “Openstack and docker top cloud projects,”

2014. [Online]. Available: http://opensource.com/business/14/8/
openstack-and-docker-top-cloud-projects

[3] “Containers on google cloud platform,” 2014. [Online]. Available:
https://developers.google.com/compute/docs/containers

[4] “Aws elastic beanstalk for docker,” 2014. [Online]. Available:
http://aws.amazon.com/blogs/aws/aws-elastic-beanstalk-for-docker/

[5] Y. Mei, L. Liu, X. Pu, and S. Sivathanu, “Performance Measurements
and Analysis of Network I/O Applications in Virtualized Cloud,” 2010
IEEE 3rd International Conference on Cloud Computing, pp. 59–66,
Jul. 2010. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=5558009

[6] X. Pu, L. Liu, Y. Mei, S. Sivathanu, Y. Koh, and C. Pu, “Understanding
Performance Interference of I/O Workload in Virtualized Cloud
Environments,” 2010 IEEE 3rd International Conference on Cloud
Computing, no. Vmm, pp. 51–58, Jul. 2010. [Online]. Available: http:
//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5558012

[7] Y. Koh, R. C. Knauerhase, P. Brett, M. Bowman, Z. Wen, and C. Pu, “An
analysis of performance interference effects in virtual environments.” in
ISPASS, 2007, pp. 200–209.

[8] H. Fu, Z. Li, C. Wu, and X. Chu, “Core-selecting auctions for dy-
namically allocating heterogeneous vms in cloud computing,” in Cloud
Computing (CLOUD), 2014 IEEE 7th International Conference on,
June 2014, pp. 152–159.

[9] A. Beloglazov and R. Buyya, “Energy efficient resource management
in virtualized cloud data centers,” in Proceedings of the 2010
10th IEEE/ACM International Conference on Cluster, Cloud and
Grid Computing, ser. CCGRID ’10. Washington, DC, USA:
IEEE Computer Society, 2010, pp. 826–831. [Online]. Available:
http://dx.doi.org/10.1109/CCGRID.2010.46

[10] B. Rochwerger, D. Breitgand, E. Levy, A. Galis, K. Nagin, I. Llorente,
R. Montero, Y. Wolfsthal, E. Elmroth, J. Caceres, M. Ben-Yehuda,
W. Emmerich, and F. Galan, “The reservoir model and architecture

for open federated cloud computing,” IBM Journal of Research and
Development, vol. 53, no. 4, pp. 4:1–4:11, July 2009.

[11] J. Lee, Y. Turner, M. Lee, L. Popa, S. Banerjee, J.-M. Kang, and
P. Sharma, “Application-driven bandwidth guarantees in datacenters,”
in Proceedings of the 2014 ACM Conference on SIGCOMM, ser.
SIGCOMM ’14. New York, NY, USA: ACM, 2014, pp. 467–478.
[Online]. Available: http://doi.acm.org/10.1145/2619239.2626326

[12] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield, “Xen and the art of virtualization,” ACM
SIGOPS Operating Systems Review, vol. 37, no. 5, pp. 164–177, 2003.

[13] “Virtualization,” IBM Systems, 2005. [Online]. Available: http:
//publib.boulder.ibm.com/infocenter/eserver/v1r2/topic/eicay/eicay.pdf

[14] P. Apparao, S. Makineni, and D. Newell, “Characterization of network
processing overheads in xen,” in Proceedings of the 2nd interna-
tional Workshop on Virtualization Technology in Distributed Computing.
IEEE Computer Society, 2006, p. 2.

[15] “How does xen work?” Xen project, 2010.
[16] L. Cherkasova, D. Gupta, and A. Vahdat, “Comparison of the three

cpu schedulers in xen,” SIGMETRICS Performance Evaluation Review,
vol. 35, no. 2, pp. 42–51, 2007.

[17] S. Soltesz, H. Pötzl, M. E. Fiuczynski, A. Bavier, and L. Peterson,
“Container-based operating system virtualization: a scalable, high-
performance alternative to hypervisors,” in ACM SIGOPS Operating
Systems Review, vol. 41, no. 3. ACM, 2007, pp. 275–287.

[18] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. A. Maltz, P. Patel, and S. Sengupta, “Vl2: a scalable and flexible
data center network,” in ACM SIGCOMM Computer Communication
Review, vol. 39, no. 4. ACM, 2009, pp. 51–62.

[19] “The docker exploit and the security of containers,”
2014. [Online]. Available: https://blog.xenproject.org/2014/06/23/
the-docker-exploit-and-the-security-of-containers/

[20] D. Mosberger and T. Jin, “httperfa tool for measuring web server
performance,” ACM SIGMETRICS Performance Evaluation Review,
vol. 26, no. 3, pp. 31–37, 1998.

[21] J. Fischbach, D. Hendricks, and J. Triplett, “Xentop,” Xen builtin Utility,
2005.

[22] D. Gupta, R. Gardner, and L. Cherkasova, “Xenmon: Qos monitoring
and performance profiling tool,” Hewlett-Packard Labs, Tech. Rep. HPL-
2005-187, 2005.

[23] A. Menon, J. R. Santos, Y. Turner, G. J. Janakiraman, and
W. Zwaenepoel, “Diagnosing performance overheads in the xen virtual
machine environment,” in Proceedings of the 1st ACM/USENIX inter-
national conference on Virtual execution environments. ACM, 2005,
pp. 13–23.

[24] M. G. Xavier, M. V. Neves, F. D. Rossi, T. C. Ferreto, T. Lange, and
C. A. De Rose, “Performance evaluation of container-based virtualiza-
tion for high performance computing environments,” in Parallel, Dis-
tributed and Network-Based Processing (PDP), 2013 21st Euromicro
International Conference on. IEEE, 2013, pp. 233–240.


