
Longer is Better: Exploiting Path Diversity

in Data Center Networks
Fung Po Tso∗, Gregg Hamilton∗, Rene Weber†, Colin S. Perkins∗ and Dimitrios P. Pezaros∗

∗School of Computing Science, University of Glasgow, G12 8QQ, UK
†Department of Computer Science, Chemnitz University of Technology, 09107 Chemnitz, Germany

Email: posco.tso@glasgow.ac.uk, g.hamilton.3@research.gla.ac.uk, rene.weber@s2011.tu-chemnitz.de,

csp@csperkins.org, dimitrios.pezaros@glasgow.ac.uk

Abstract—Data Center (DC) networks exhibit much more cen-
tralized characteristics than the legacy Internet, yet they are op-
erated by similar distributed routing and control algorithms that
fail to exploit topological redundancy to deliver better and more
sustainable performance. Multipath protocols, for example, use
node-local and heuristic information to only exploit path diversity
between shortest paths. In this paper, we use a measurement-
based approach to schedule flows over both shortest and non-
shortest paths based on temporal network-wide utilization. We
present the Baatdaat

1 flow scheduling algorithm which uses spare
DC network capacity to mitigate the performance degradation
of heavily utilized links. Results show that Baatdaat achieves
close to optimal Traffic Engineering by reducing network-wide
maximum link utilization by up to 18% over Equal-Cost Multi-
Path (ECMP) routing, while at the same time improving flow
completion time by 41% - 95%.

Index Terms—Traffic Engineering, Multipath Scheduling,
Unequal-cost Multipath, Data Center Networks, Software De-
fined Networking

I. INTRODUCTION

Admittedly, the Internet has known huge success mainly

due to the complete decentralization of the infrastructure,

and the bandwidth over-provisioning of point-to-point links

carrying aggregate traffic over the network core. Today, Cloud

computing is emerging as an important paradigm where pro-

cessing and communication resources are concentrated and

hosted over generic Data Center (DC) infrastructures that

need to accommodate a wide range of services, from private

data processing to public website hosting. Although Cloud

computing lends itself to much more centrally orchestrated

resource management and provisioning approaches, the un-

derlying DC networks are operated using commodity packet

communication mechanisms, such as shortest path distributed

routing protocols and traffic engineering based on node-local

optimizations. This results in sub-optimal overall network

operation, where congestion is exhibited across a significant

number of links [1] especially at higher layers in the topology,

while others are idling [2]. A number of traffic engineering

approaches have been devised to alleviate network hotspots

mainly by using redundant shortest paths [3] but, they either

fail to take temporal network-wide state into consideration [4]

or require applications to explicitly make the network aware

of traffic priorities [5]. Such schemes suffer from inherent

1Baatdaat is Cantonese for “reachable in all directions”.

limitations of pseudo-random algorithms (e.g., collisions of

packet header hashes) [6] or in the legacy Internet-like mech-

anisms they use that, e.g., limit path diversity to usually two

distinct shortest paths between source-destination server pairs.

In general, they attempt to solve a global optimization problem

when they only use distributed node-local state [3][4][6].

In this paper, we introduce Baatdaat, a novel flow scheduler

that exploits path diversity to reduce congestion and increase

the usable capacity of DC topologies. Baatdaat is a logically

centralized system compatible with OpenFlow [7] that uses

direct measurement in short timescales to construct a network-

wide view of temporal bandwidth utilization, and to subse-

quently schedule flows over both shortest and non-shortest

paths to further exploit path redundancy and spare capacity in

the DC. In contrast to existing traffic engineering approaches,

Baatdaat does not rely on the ability to predict or schedule

flows based on their size [6][5], nor does it assume a known

traffic matrix [8] which would be unsuitable for the highly un-

predictable DC traffic dynamics. Unlike typical match-commit

Software-Defined Networking (SDN) approaches, Baatdaat

uses a combination of centralized and distributed measure-

ment and control components to synthesize global knowledge

from node-local performance information and to subsequently

enforce network-wide flow scheduling. We employ OpenFlow

running on NetFPGA programmable switches [9] that allows

packet processing to be performed at line-speed and enable

real-time dynamic flow scheduling. Node-local link utilization

measurements are aggregated to a central controller which

then computes and installs least utilized outgoing paths on

each switch. Flows can then be scheduled over non-shortest

lightly utilized paths to avoid congestion. Our results show

that by avoiding congested shortest paths, we can significantly

reduce the overall network utilization while at the same time

improve flow completion times, i.e., avoiding congestion pays

off for the extra hops taken by a subset of flows. Baatdaat does

not require any modifications to applications that operate over

DC environments, while its combination of centralized and

distributed components makes it more scalable than typical

OpenFlow deployments over DCs [10].

The main contributions of this work include:

• A hardware-assisted traffic monitor that measures link uti-

lization on the switches at line-speed without impacting

their forwarding performance.

• A SDN-based adaptive flow scheduling system that or-

2013 IEEE 33rd International Conference on Distributed Computing Systems

1063-6927/13 $26.00 © 2013 IEEE

DOI 10.1109/ICDCS.2013.36

299

2013 IEEE 33rd International Conference on Distributed Computing Systems

1063-6927/13 $26.00 © 2013 IEEE

DOI 10.1109/ICDCS.2013.36

430

2013 IEEE 33rd International Conference on Distributed Computing Systems

1063-6927/13 $26.00 © 2013 IEEE

DOI 10.1109/ICDCS.2013.36

430

�

�

(a)

����

������	
���

�������	�������

(b)

Fig. 1: (a) Canonical tree topology and (b) Fat-tree topology

chestrates and enforces network-wide traffic engineering

based on link-local metrics.

• Improved congestion alleviation in DC networks over

existing scheduling algorithms by spreading load over

shortest and detour paths, while at the same time reducing

flow completion time.

Our results show that Baatdaat can achieve close to optimal

Traffic Engineering by improving over ECMP by up to 18%

for different types of load [5] while only deviating by 3%

from optimal, on average. At the same time, flow completion

is improved by up to 10%.

Although long-term provisioning of DC infrastructures is

necessary to accommodate growth in service demand, the

improved network utilization offered by Baatdaat over short

timescales can provide the necessary short-term traffic shaping

to avoid resource outages at the onset of sudden traffic

dynamics.

The remainder of the paper is structured as follows. Sec-

tion II discusses the design and implementation of Baatdaat,

and its different hardware and software components. Sec-

tion III presents in detail the algorithmic operation of Baatdaat

scheduling. Section IV evaluates the performance of Baatdaat

over testbed and simulated environments. Section V discusses

related work and Section VI concludes the paper.

II. SYSTEM DESIGN & ARCHITECTURE

In this section we present the design of Baatdaat, with

particular emphasis on our implementation of link utilization

modules on the NetFPGA platform. We focus the discussion

on typical DC topologies, such as canonical [11] and fat-

tree [12] as shown in Fig. 1.

A. Design Requirements

A system that performs non-shortest-path flow scheduling

in DCs based on real-time link status feedback has to meet

the following design requirements:

• R1: Each switch should be able to monitor link utilization

of its associated links at line rate.

• R2: Flows should be allowed to opportunistically take

detours (i.e., longer paths) when it is beneficial to do so.

• R3: Global flow scheduling should easily scale to the size

of a DC network.

While current switches do not support real-time link mea-

surements, R1 requires a new hardware-based module to con-

duct line-rate measurement while not impacting the device’s

���������	���������
�
��������
����

��������
������
����������
����

�����������
���� �

�!�"�
	#� ���
������$ ���!�#%�$��!�&����#�

����!���!!'
���!�����(�"���#����!�����
����$��!�&����������$�!�#%��
������#���#����������!����
����)$!�������#�
������� ���!���!�!�#%�$��!�&����#�
��������������������#� �!!� �
�������� ������#��"�������

���#�!�"��"������

���

����� ��!�#%�$��!�&����#
��������������
����)�$����!!�������!�
��������$ ������

Fig. 2: System architecture.

packet forwarding performance. We have implemented such a

component alongside NetFPGA’s [9] OpenFlow implementa-

tion. We will show in later sections that our implementation

is highly efficient and maintains line-rate throughput.

R2 is highly desirable given the measurement studies reveal-

ing that DC networks generally remain underutilized, albeit

with a small fraction of congested links [2]. Using non-shortest

paths to route traffic can improve network-wide utilization, so

long as it doesn’t impact individual flow performance.

Scalability, R3, is crucial for centralized approaches since

performance of the controller has a direct impact on the

network as a whole. In order not to turn the controller into the

bottleneck, we have adopted a mix of distributed and central-

ized scheduling approaches for Baatdaat. First, all switches

individually monitor their link utilization and independently

schedule flows onto the links, while the controller only deter-

mines detour paths. This way, the controller’s workload can

be significantly reduced.

B. System Architecture

The Baatdaat architecture consists of OpenFlow switches

in DC-compatible topology, and a single OpenFlow controller

to collect link utilization statistics among aggregation switches

(in the multilayered tree structure, links seen by ToRs are also

exposed to aggregation switches) and to determine flow detour

paths, as shown in Fig. 2. The single controller can create a

performance bottleneck and a single point of failure in the

network. In Baatdaat, the use of multiple controllers is per-

mitted. For example, one controller can be deployed for each

pod in a fat tree or its equivalent counterpart in the canonical

tree. Multiple controllers can work independently requiring

no synchronization between them, making the control plane

300431431

scalable and robust to failures. Each controller can interact

with switches within a pod and compute pod-local paths, if

detours are restricted at the pod-level (in both canonical tree

and fat-tree). As we will see in section IV, this is the most

beneficial mode of operation for Baatdaat, i.e., when detours

are only allowed within each pod.

C. Benefits of Hardware Implementation

In order to understand the impact of continuously gathering

throughput information on each link, we have implemented

link throughput measurement on each of three OpenFlow

platforms: NetFPGA hardware; the Open vSwitch kernel mod-

ule [13]; and the Stanford reference user-space OpenFlow

implementation [7].

Each measurement module periodically polls for the total

number of bytes transferred and received on each network

interface. The method of polling is specific to each imple-

mentation. The NetFPGA implementation polls the hardware;

Open vSwitch reads the statistics from each net_device

structure; and OpenFlow parses data from /proc/net/dev.

After each successive reading, the throughput over the polling

interval between the current and previous reading is calculated

and communicated to the central OpenFlow controller. The

current polling interval is 1ms.

Experiments were conducted to evaluate the performance of

the switches with our link utilization measurement capabilities

implemented. The experimental testbed setup was two end-

host systems connected via a switch. The two end-hosts were

AMD Athlon 64 X2 5600+ systems, each with 3.5GB RAM

and a 82571EB Gigabit Ethernet NIC installed. All exper-

iments used a NetFPGA box as the switch, consisting of an

AMD Phenom II X4 965 with 3.5GB RAM, a 4x1G NetFPGA

card, and a 2x1GB Intel 82571EB Gigabit Ethernet NIC. The

NetFPGA card was used to test the hardware implementation,

and the Intel NIC was used to test the kernel and user-space

implementations, while keeping the base system the same.

The NetFPGA reference switch was used as an experimental

baseline for comparison against the cost of our measurement-

enabled implementations.

Our first experiment was to have one end-host ping the

other. 10,000 back-to-back pings were taken for each platform

and the average taken, with the results presented in Table I. As

our system is distributed in nature and pushes data collection

tasks to the switches, we also wanted to evaluate the strain

placed on each system, and to understand any degradation

in the forwarding performance of our implementations. We

ran throughput tests using Iperf with TCP and a variety of

UDP datagram sizes and took readings of CPU utilization on

the switch for the duration of each throughput test. The TCP

and UDP throughput tests were each run for 60 seconds. The

CPU utilization results are presented in Table II. For UDP, the

average CPU usage across all packet sizes is presented.

As Table I shows, the NetFPGA implementation shows a

lower ping time than the software implementations, revealing

the clear benefits of offloading the work to dedicated on-board

hardware. The TCP throughput achieved by both the NetF-

PGA reference switch implementation and our measurement-

enabled NetFPGA OpenFlow switch was 940 Mb/s, showing

TABLE I: Ping times across different switch implementations.

Switch Type NetFPGA
Ref.
Switch

NetFPGA Open
vSwitch
Kernel

OpenFlow
User-
Space

Min. Response (ms) 0.051 0.055 0.143 0.157

Avg. Response (ms) 0.062 0.072 0.234 0.289

TABLE II: Average CPU usage across different switch implementa-
tions.

Switch Type NetFPGA
Ref.
Switch

NetFPGA Open
vSwitch
Kernel

OpenFlow
User-
Space

TCP 0.01% 0.04% 6.57% 25.8%

UDP 0.00% 0.03% 13.74% 27.86%

that our implementation does not impact forwarding perfor-

mance noticeably. Similarly, both the reference implemen-

tation and our own achieved a throughput of 956 Mb/s.

The UDP throughput results also support the claim that our

measurement-enabled hardware implementation has no notice-

able impact on the forwarding performance of our switch,

when compared to the reference switch implementation.

While our hardware implementation appeared to display

similar throughput capabilities to the reference implementation

hence demonstrating that our throughput measurements have

negligible effect on the forwarding performance, this is not

the full picture. Table II reveals that the reference NetFPGA

switch implementation only puts a load of 0.01% on the CPU,

while our measurement-enabled NetFPGA OpenFlow switch

imposes a load of only 0.04% in the worst case, showing

the benefits of hardware acceleration. By comparison, Open

vSwitch and user-space OpenFlow forwarding require 13.74%

and 27.86% of CPU time in the worst case, respectively.

These results allow us to draw two conclusions about our

measurement-enabled OpenFlow implementations. First, we

do not negatively impact the line-rate forwarding capabilities

with our hardware NetFPGA implementation, achieving the

same throughput rates as the reference NIC implementation.

Second, the NetFPGA implementation benefits significantly

from offloading all packet processing to the NetFPGA, re-

sulting in lower ping times, and lower (almost non-existent)

CPU utilization when compared to Open vSwitch or user-

space OpenFlow. These results clearly reveal the benefits of

pushing data collection logic to OpenFlow switches containing

programmable hardware in order to significantly reduce CPU

load and network response times.

D. Measurement Module Design

In OperFlow’s operational paradigm, forwarding decisions

are made by a logically centralized controller, which can in

turn add and remove forwarding entries in OpenFlow switches.

This form of Software-Defined Network (SDN) abstracts

complexity from hardware to controller software, allowing

forwarding behavior to be programmed into a central controller

that communicates with switches via in-band control messages

or via directly-connected out-of-band links.

Each OpenFlow switch matches incoming flows using

exact-match or wildcard filters on specific protocol fields. If a

301432432

������
������

	
���
�����
������

��������
������

�������

������
	�����

�
��
��
��
��
��
�

��
��
��
��
���
�

����
�����������

������� ����������������

�������������
!����

����

���

Fig. 3: Design of the link utilization module within the OpenFlow
switch pipeline.

match is not found for an arriving packet, the packet is sent

to the controller which registers the new flow and decides

on the action(s) that should be applied to all subsequent

packets matching the same filter. The action is then pushed

to the switch and cached as an entry in the switch’s flow

table. Subsequent packets belonging to the same flow are

then directly forwarded without the need for redirection to

the controller.

We have implemented a hardware-based link measurement

module in-line with NetFPGA’s OpenFlow switch implemen-

tation [14] as illustrated in Fig. 3. As soon as a packet arrives

at the input port, the link utilization module adds the size of

the packet to the overall bytes arriving on the specific link.

Similarly, after the packet is processed by the output port

lookup, its size will be added to the total for the outgoing link.

After a specified interval link utilization will be calculated by

counting the number of bytes sent and received on a link and

subtracting these from the stored byte counts from the previous

calculation.

E. Hardware Multipathing

OpenFlow v1.0 does not support multipathing (OpenFlow

v1.1 has added support for ECMP, however the reference

hardware implementation is not yet available). We hence

needed to enable hardware multipathing to take advantage of

path redundancy of the physical infrastructure.

The lack of native support for multipathing means switches

are not able to do line-rate multipathing locally as forwarding

decisions are still dictated by the controller even if there is

multipath support. For example, as the exact match table takes

precedence over the wildcard table in the normal mode of

operation, whenever there is a match miss in the exact match

table, the packet will be matched against the wildcard table.

If both tables return a miss, the flow will be treated as a

new flow and will be forwarded to the controller. However,

in Baatdaat we want some multipathing decisions to be made

locally. The other modification required by Baatdaat is to

enable a forwarding table such that each switch knows (when)

there are more than one outgoing ports for a flow. Hence, in

Baatdaat, the wildcard table is also a forwarding table and the

shortest equal cost paths are always the default entries. Detour

paths, if determined by the controller, will also be added to

the wildcard table. However, there is an extra field in each

table entry storing the link utilization. Every new flow (no

match in the exact match table) will be matched against the

wildcard table with their destination IP initially, and the one

with least utilization among the set of paths will be used.

Eventually, an exact match entry for the flow will be created

and all subsequent packets will be matched against this.

Switches supporting multipathing need to recognize each

flow individually, which is typically achieved by hashing one

or more tuples in the packet’s headers, as is the case in ECMP.

The reference implementation in [9] already comes with a flow

hashing module, the header parser, which we can exploit to

enable native flow identification at line rate.

Next, since multipathing can deteriorate the performance

of stateful protocols such as TCP due to out-of-order packet

delivery, Baatdaat ensures that all packets belonging to the

same flow are always scheduled over the same path even when

the link utilization changes. Hence, maintenance of a flow

table is required. To realize this on the NetFPGA, we hooked

in an anchor between the header parser module and the arbiter

module such that whenever both exact match lookup and

wildcard lookup assert their match miss signal –implying a

newly arriving flow–, a new flow entry is created and added to

the exact match table (i.e., in NetFPGA’s SRAM). Therefore,

successive packets will always have an exact match hit and

follow the same path. The exact match table is virtually a

hash table storing all active flows in the network. Baatdaat

uses this table to prevent flow oscillation due to change of

link utilization since scheduled flows will always follow the

same path.

III. Baatdaat SCHEDULING

In this section we discuss the operation of the Baatdaat

scheduling loop and address how the controller makes use of

link utilization information to schedule flows on non-shortest-

path routes.

Intuitively, the scheduling loop should be short enough

to capture all flow inter-arrivals. In this case, centralized

schedulers that decide which path to pin a flow to may

be hard-pressed to keep up, due to too much overhead in

processing control data. While it is reported that flow inter-

arrivals per switch port can be as long as 10-15 ms for Cloud

DCs, we set our measurement loop to run every 1 ms by

default with an aim to capture instantaneous traffic bursts. The

link-utilization measurement results are stored locally in each

switch as an array of size equivalent to the number of ports

in the switch. Baatdaat is a flow-based scheduler that uses

5-tuple header hashing to guarantee packets belonging to the

same flow traverse the same path, so that packet re-ordering

is avoided. Hence, when a new flow joins, the switch first

queries the number of outgoing ports, such as output ports for

multiple shortest paths, and then places the flow onto the least

utilized link by comparing measured link utilizations. When all

outgoing links are reported to have the same utilization, such

as when all links have 0% utilization right after initialization,

the flow is randomly scheduled using commodity ECMP.

Aggregation switches, however, need to report statistics to

the controller, which will determine whether or not the new

flow should take a detour. The report frequency is independent

to the measurement interval and can be set to 100 ms.

302433433

Considering the latency in the control path, where processing

delay can be up to 220 ms in the controller, it is unnecessary

to report the statistics as frequently as link measurement.

To make the scheduling manageable, we impose two con-

straints on any flow taking a detour: 1) the flow is downlink

traffic of the aggregation switches. This means detours only

happen between the aggregation and the Top-of-Rack (ToR)

layers of the DC topology. In DCs, cross-aggregation-switch

traffic is more common than cross-core-switch due to the

traffic locality nature of DC networks. Multi-rooted tree archi-

tectures, e.g., fat-tree, provide large amounts of interconnects

between the aggregation-ToR layers. In particular, these are

mesh interconnects in a fat tree topology. This offers signifi-

cant path diversity if detour is allowed; 2) the flow can only

take a detour of 2 hops longer than the shortest path to prevent

oscillation and flooding-like effects in the network. We will

show later in Sec. IV that a detour of 2 extra hops is an ideal

choice.

While each switch keeps link utilization values locally in

the form of an array, the controller maintains a link utilization

matrix, M . Only aggregation switches update the OpenFlow

controller with the utilization of their associated links. Assum-

ing M is a m×n matrix, m denotes the number of aggregation

switches in a pod, while n is the number of downlink ports

on an aggregation switch. For ease of presentation, we as-

sume switches and their ports are sequentially numbered. For

example, Mij is the link utilization of port j of switch i.

By allowing detours, path diversity in the fat tree network

increases by k/2 × (k/2 − 1) × (k/2 − 2) compared to the

original shortest path scheme which provides a path diversity

of k/2. The path utilization of detour paths is defined as

max(detour links)×c, where c is a weighting factor to reflect

the fact that it is a longer path. In our simulation experiments

we found that c = 1.5 works well as it gives good detour

opportunity. We have to set c > 1 in order to bias longer

paths, but setting c ≥ 2 will see a significant decrease in

detour opportunities.

The next question is, how does the controller determine

detour paths? Clearly, as detour paths are limited to being no

more than two hops longer than shortest paths and only happen

in the aggregation-TOR layer, starting from any aggregation

switch, any detour of 2 more hops will lead to a path of 4

hops. Hence, the scheduling algorithm starts by constructing

an acyclic tree of depth 3, as shown in Fig. 4, with k switches

as vertices and links among them as edges. This can be easily

achieved by parsing M (i.e., adjacent matrix) as it contains

all required link and port information in a pod.

Depth-first or breadth-first search can then be applied to

identify and compute path utilization along the path. The

OpenFlow controller, after determining a detour path for a

new flow, installs the OpenFlow entry to all affected switches.

The time complexity of this search is O((k/2 − 1)2) for a

fat-tree topology although the search tree has a depth of 3. For

a k-ary fat tree, there are k/2 aggregation and ToR switches

in a pod, respectively. In the example given in Fig. 4 we can

see that the sequence for a detour path is: (ToR switch link1

aggregation switch link2 ToR link3 aggregation switch link4

ToR). As link 1 is independently chosen by the ToR switch

� � �

� � �

� ��
� ��
� ��

� �� ��
� �� ��

� �� ��
� �� ��

� �� ��
� �� ��

�	
��������	�
������
���

��
������	�

�

� �

� �

� �

�

�

� �

� �

� �

�

�

� �

� �

� �

�

Fig. 4: Example of a calculated detour in a pod, assuming a flow is
to be forwarded from node 4 to node 5.

itself, link 2 – link 3 – link 4 is the actual detour determined by

the controller. Therefore, starting from an aggregation switch,

due to the densely interconnected nature of each pod, it has

k/2 links to ToR switches including the source node. But the

source ToR switch has to be excluded to prevent loops, so

the algorithm only needs to search through (and to compute

link utilization for) k/2 − 1 links at the first iteration (depth

1) for link 1. Similarly, there are k/2 − 1 iterations each at

depth 2 for link 3. For link 4, due to the mesh-like interconnect

of aggregation–ToR switches, the next hop must contain the

destination node, and the algorithm does not need to search

any further hence stopping at this level. Therefore, the overall

complexity is O((k/2− 1)2).
These rules and algorithm should also apply to the canonical

tree DC topology without modification. Assuming that, in such

a topology, every set of m switches connect to two aggregation

switches. Hence, the path diversity in between aggregation

and ToR layers becomes 2×(m− 1) and complexity for path

searching is O(m).

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of Baatdaat

with respect to reduced network-wide maximum link utiliza-

tion and improved load-balancing due to path diversity. In

order to test the properties of our system at scale, we have

used the ns-3 network simulator for network-wide properties,

and our hardware-assisted testbed implementation to evaluate

the footprint of the time-critical processing elements.

A. Network-wide Experimental Results

We have simulated a k = 8 fat-tree topology (128 servers

grouped into 8 pods with 8 switches each) with 1Gb/s in-

terconnect links in ns-3 with the OpenFlow module enabled.

Simulated flows consist of uniformly chosen 4 KB, 8 KB,

and 100 KB flows, to include the range of latency-sensitive

flows common in DC networks, the majority of which are

according to research findings, small and complete in one or

two RTTs [15], [16]. As for the large flows which exceed 10%

303434434

�� �� �� �� ���
�

���

���

���

���

�

	
������� ������
���� ���

�
�
�

����
�
�

�

�
!�	"

(a)

�� �� �� �� ���
�

���

���

���

���

�

	
������� ������
���� ���

�
�
�

����
�

�

�

�

!�	"

(b)

� �� �� �� �� ���
�

���

���

���

���

�

	
������� ������
���� ���

�
�
�

����
�

�

�

�

!�	"

(c)

0 10 20 30
0

0.2

0.4

0.6

0.8

1

Flow Completion Time (ms)

C
D

F

Baatdaat
Ecmp

(d)

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

Flow Completion Time (ms)

C
D

F

Baatdaat
ECMP

(e)

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

Flow Completion Time (ms)

C
D

F

Baatdaat
ECMP

(f)

Fig. 5: CDF of maximum link utilization (MLU) and flow completion time for 4 KB, 8 KB and 100 KB flows respectively.

of a server’s link capacity (as used in Hedera [6]), they should

only be scheduled onto the least utilized shortest path since

they can otherwise lead to congestion at multiple links. In this

paper we stay focused on the small flows which are mostly

found in the production data mining and Web service Cloud

DCs [15]. The traffic is generated by sending these uniform

flows to 100 servers at different racks and therefore create a

high and unbalanced network load.

Optimal values used for benchmarking are computed based

on the Penalizing Exponential Flow spliTting (PEFT) algo-

rithm [8]. We first logged the traffic matrices (TMs) of every

switching device in a simulated network, and then these TMs

are used to compute optimal link weight for traffic splitting.

Fig. 5 shows the measured Maximum Link Utilization

(MLU) for 4 KB, 8 KB and 100 KB flows for ECMP and

Baatdaat approaches, respectively. The results demonstrate

that Baatdaat consistently outperforms ECMP for all types

of flows by up to 18%, and only deviates by 3% from optimal

on average.

Looking more closely into the CDFs, the improvement for

4 KB flows is more uniform between the 30% – 70% of

the MLU region. For 8 KB flows, the improvement is more

significant around the 60% MLU region, and the improvement

for 100 KB flows is more visible around the 70% MLU

region. In these regions, Baatdaat only deviates 3% - 5%

from the optimal, which demonstrates that the detour approach

efficiently mitigates the increased congestion by offloading

some flows onto less congested, albeit longer paths. This

is an important feature since it offers an additional 10-18%

headroom to DC providers using short-term traffic engineering

to avoid resource outages due to temporal increases in traffic.

While DC RTTs can be as low as 250μs [15], can a slight

detour of two more hops degrade individual flow completion

time? We show the flow completion times for 4 KB, 8 KB

and 100 KB flows for ECMP and Baatdaat, in Figures 5d, 5e,

and 5f, respectively. While most traffic flows complete within

1 ms for 4 KB, 3 ms for 8 KB and 10 ms for 100 KB

flows, we can also see that Baatdaat can significantly improve

flow completion time, particularly between the 60th - 100th

percentile, by as much as 41% to 95%. Obviously, this

result demonstrates that allowing detours not only does not

deteriorate but rather improves flow completion time. ECMP

is slightly better than Baatdaat in the 30th percentile, due to

small flows being more latency sensitive, and detour paths

marginally increasing (≤ 1 ms) latency. However, we can see

in the 70th - 100th percentile, at least 10% flows complete faster

in Baatdaat than they do in ECMP. Allowing larger number

of flows to complete faster is an important feature for data

center networks because many Web applications that run over

these topologies require strict deadlines [15].

B. Impact of Measurement Intervals

Baatdaat uses temporal network load to schedule network

flows, hence the link utilization measurement interval becomes

crucial. In this experiment, we increased the measurement

interval from 1 ms to 10 ms and 100 ms respectively, to study

how it will affect Baatdaat’s performance.

From Fig. 6, it is apparent that the measurement frequency

does not have an equal impact on every type of flow for

MLU and flow completion time. The impact decreases with

increments in the flow size. MLU for 4 KB flows drops

dramatically when we increased the measurement interval

304435435

�� �� �� �� ���
�

���

���

���

���

�

	
������� ������
���� ���

�
�
�

���������	

����������	

�����������	

����

(a)

����

(b)

����

(c)

����

(d)

����

(e)

����

(f)

Fig. 6: CDF of maximum link utilization (MLU) and flow completion time for 4 KB, 8 KB and 100 KB flows with different measurement
intervals respectively.

to 10 ms, as shown in Fig. 6a, with lower MLU region

overlapping with ECMP and higher region exhibiting about

5% gain. Once we further increased the interval to 100 ms,

the MLU curve shift further right giving a worse result than

ECMP. In 8 KB and 100 KB flow scenarios, the 10 ms interval

still gives comparable result to the 1 ms case. With a 100 ms

interval, the CDF of the MLU curve tends to overlap with

that of ECMP in the 8 KB flow scenario, while the 100 KB

scenario achieves a significant performance gain of up to 10%.

Similar behavior is also reflected in the flow completion time

experiments.

In this experiment, we can see that traffic flows with smaller

flow size are more vulnerable to sparse measurement intervals.

In fact, this is related to the flow arrival interval. When the

measurement interval in Baatdaat is increased, it becomes

less responsive to transient changes in network load, so more

incoming small flows may be agnostically placed on to the

same path, and cause higher link utilization.

C. Impact of Longer Paths

We advocate using less congested albeit longer paths to

alleviate congestion on the highly utilized links. However, one

question that needs to be answered is how much longer is

the ideal for DC networks? Due to the symmetric design of

DC networks, any longer path between two communicating

servers is a multiple of 2 hops longer than shortest ones. We

have already shown earlier that a detour of two extra hops can

indeed remedy congested link and improve flow completion

time. Can a detour of four extra hops achieve better results

given the even larger number of diverse paths it can allow?

In this experiment, we have set the detour path to four extra

hops. The algorithm presented in Sec III also applies but with

two more search depths. Fig. 7 shows our experimental results.

The CDF of MLU curves in all scenarios constantly exhibit

around 3-5% improvement over ECMP with only the lower

region (i.e., MLU ≤ 20) being slightly worse than ECMP.

This is due to detours becoming very unlikely as it is more

difficult to opportunistically find a suitable path which satisfies

the requirement utilization of candidate path = max(detour

links)×c. However, when a detour does happen, the penalty it

imposes on multiple links along the path is too significant to

compensate the local gain. Flow completion time, as shown in

Fig. 7d-7f, does not show significant improvement over ECMP.

On the other hand, when one considers longer paths, the

complexity of the path searching algorithm needs to be ac-

counted for as well. Not only do longer detour paths not

give any obvious performance gain, but the path finding

complexity also increases quickly as the path length grows.

Thus, we suggest that only detours of two extra hops should

be considered.

D. Testbed Experimental Results

We have implemented Baatdaat and evaluated it on a testbed

consisting of six OpenFlow switches, an OpenFlow controller

and 4 server hosts, as shown in Fig. 8.

The testbed is formed to evaluate Badtdaat performance on

canonical tree topologies (as opposed to the fat-tree topology

used in the simulation). Two of the switches are aggregation

switches and the remaining are ToR switches, each connecting

to one host machine. The two aggregation switches commu-

nicate with the controller through out-of-band connections

305436436

�� �� �� �� ���
�

���

���

���

���

�

	
������� ������
���� ���

�
�
�

	

��

��

�

(a)

����

(b)

����

(c)

� �� �� ��
�

���

���

���

��	

�

������������ ���� ����

�
�

��������� ����
��������� ����
���

(d)

� �� �� �� ��
�

� �

�

�

��

�

���������	
��� ��	 ����

�
�
�

���
���
� ����
���
���
� ����
����

(e)

� �� �� �� ��
�

���

���

���

���

�

����������	
�� �
�� ���

�
�
�

���	���	�����
���	���	� ����
����

(f)

Fig. 7: CDF of maximum link utilization (MLU) and flow completion time for 4 KB, 8 KB and 100 KB flows with different path lengths
respectively.

TABLE III: Baatdaat/ECMP MLU ratio at 25th, 50th, 75th and 100th
percentile for fat-tree and canonical tree topologies

Flow
Type

Topology 25th 50th 75th 100th

4 KB
Fat-tree 0.9463 0.9433 0.9456 0.9807
Canonical 0.9258 0.9470 0.9334 0.9324

8 KB
Fat-tree 0.9557 0.9468 0.9408 0.9906
Canonical 0.9675 0.9485 0.9469 0.9875

100 KB
Fat-tree 0.9333 0.9123 0.8383 0.9407
Canonical 0.9749 0.9676 0.9706 0.9972

(shown as dash lines in Fig. 8). The out-of-band connections

are only for control data among the switches and the controller,

and do not carry any data traffic. To accurately capture DC

network characteristics, we also need to produce a certain level

of network oversubscription. To achieve this we throttled the

link capacity among switches from 1 Gb/s to 100 Mb/s and

have link capacity between switches and hosts , yielding an

oversubscription ratio of 1 : 5.

Table III tabulates our testbed results of Baatdaat v.s. ECMP

MLU ratio at 25th, 50th, 75th and 100th percentile. It can

be seen that Baatdaat has consistent gain of up to 7% over

ECMP, over the canonical tree testbed. The performance gain,

however, is less than that over a fat-tree topology due to the

reduced path diversity that can be exploited. Nevertheless,

the testbed results show that Baatdaat is a topology-neutral

scheduling algorithm that works over both fat-tree and canon-

ical tree topologies.

E. Hardware Implementation Complexity

We have analyzed the hardware synthesis reports and made

a comparison between the original and our modified OpenFlow

���������	
��������
����������������

�����������
����������	����

�������

�	
��	����

 !������

Fig. 8: Testbed topology

implementation on NetFPGA. The result is shown in Table IV.

On the NetFPGA a Xilinx Virtex 2 Pro 50 chip is used

which consists of 5,904 CLBs (Configurable Logic Blocks).

A CLB consists of four Slices, and a Slice consists of two

LUTs (Look Up Tables) and two Flip Flops. Hence, the chip

has 47,232 (5,904×4×2) Flip Flops and 47,232 (5,904×4×2)

LUTs in total. In Baatdaat’s version of OpenFlow presented

in Sec II, we have not only implemented a new link utiliza-

tion measurement on top of the reference implementation,

but also modified the flow processing pipeline to provide

for multipathing support. Additionally, a divider generator is

used to calculate the link utilization, resulting in consuming

additional logic. However, the extra number of flip flops

as well as the LUTs are still kept under 20%, hence the

additional complexity is minimal. Moreover, evaluation results

show that our implementation does not degrade the NetFPGA’s

throughput performance.

306437437

TABLE IV: NetFPGA implementation complexity

Component Ref Design Baatdaat Difference

Slice Logic Utilization

Slice Flip Flops 43% 61% 18%
Slice LUTs 72% 91% 19%
Slices LUTs as logic 56% 75% 19%

Memory Utilization

Slice LUTs as Dual Port RAMs 7% 7% 0%
Slice LUTs as 32x1 RAMS 0.5% 0.5% 0%
Slice LUTS as 16x1 RAMs 0.3% 0.3% 0%
RAMB16s 65% 65% 0%

I/O Utilization Number of bonded IOBs 51% 51% 0%

Specific Feature Utilization
Number of BUFGMUXs 50% 50% 0%
Number of DCMs 75% 75% 0%

TABLE V: Controller Performance

k = 4 8 16 24 32 48

Single Itera-
tion (ms)

0.005 0.012 0.021 0.041 0.063 0.122

Number of
Aggregation
Switch

8 32 128 288 512 1152

Single
Iteration
(ms) for All
Aggregation
Switches

1.53 6.47 23.2 53.2 95.8 220.3

F. Controller Efficiency

Next, we test the Baatdaat controller’s efficiency. As pre-

sented in Sec II-A, only aggregation switches connect to

the controller. The controller determines detour paths for the

aggregation switches by executing the Baatdaat scheduling

algorithm presented in Sec III, rather than dealing with each

flow individually. So a simple question like “how many flows

the controller can handle at a time?” cannot sufficiently capture

Baatdaat’s scheduling characteristics. The more important

question here is “How many aggregation switches can the con-

troller support at a time with minimal computational latency?”.

The controller runs on a machine with an Intel i5 2.3Ghz

CPU and 4GB RAM. Another identical machine generated

connections and transmitted link utilization packets to the

controller. We first ran the test on the controller to find

the baseline time the controller takes to search through all

possibilities in one iteration, for one aggregation switch and

various k-port switches. We then run tests by connecting all

aggregation switches to the controller and for various k-port

fat-trees. The test result is tabulated in Table V. Clearly, we

see that the algorithm is very efficient as it only varies from

5 μs to 122 μs for single iteration (finished executing path

searching once) which is linear with a growing number of

k from k = 4 to k = 48. And with such large k values,

the number of network-wide aggregation switches grows from

32 to 1,152. Again, the time to finish one iteration for all

aggregation switches grows linearly from 1.53 ms to 220.3

ms. Obviously, the test result reflects that even with a large

fat-tree network (k = 48), one controller can seamlessly serve

all aggregation switches with remarkably fast response times.

G. Baatdaat Overhead

As a load-adaptive scheduler, Baatdaat comes with certain

level of control overhead, and extra hardware component cost.

We have shown that the hardware measurement module can

be easily implemented as part of the NetFPGA’s OpenFlow

switch module with only a little increment in the logic

component used. We believe this would be an inexpensive

module to build in otherwise commodity OpenFlow switches.

In addition, Baatdaat requires a flow table to store path

information for the active flows, and a forwarding table for

multipathing. Nevertheless, as mentioned above, Baatdaat can

exploit Openflow’s existing exact match (i.e., same piece of

memory with the exact match table) and wirldcard tables

for storing flow and forwarding information, respectively, and

thus incurring no extra memory cost. For example, NEC

PF5240 Openflow switch can store up to 160,000 12-tuple flow

entries. Furthermore, the control message overhead due to link

utilization being reported to the controller can be configured

at an appropriate temporal interval. Assuming a frequent 1 ms

interval, the control message overhead would be attributed to

8 × 48 = 384 Bytes (assuming a 48 port switch) which is

equivalent to only 384,000 Bytes per second per aggregate

switch reporting to the controller. This is a marginal cost,

compared to the potential revenue return Baatdaat can bring

to operators through increasing DC’s available capacity and

improving flow completion times.

V. RELATED WORK

Traffic Engineering and routing techniques have been

widely used for Internet topologies [17][18][19] that typically

operate on predictable aggregate traffic matrices.

Within DC networks, typically ECMP [3] is used to exploit

path diversity and distribute load among redundant shortest

paths. However, ECMP suffers from hash collisions, which can

result in unbalanced flow allocations across paths. VL2 [4] is a

virtual layer 2 infrastructure which uses Valiant Load Balanc-

ing (VLB) to randomize packet forwarding. Monsoon [20] is a

mesh-like DC architecture that also incorporates VLB to allow

for traffic balancing over a large layer 2 mesh for any traffic

patterns. However, VLB exhibits similar limitations to those of

ECMP [6]. Hedera complements ECMP by identifying large

flows exceeding 100 Mb/s at network edge switches and then

scheduling these flows over a redundant path with suitable

capacity [6]. However, this approach becomes limited as net-

work utilization increases and flows fair-share the bottleneck

bandwidth. On the contrary, our work attempts to place flows

based on minimum link utilization and independent of flow

size. DeTail [15] attempts to reduce flow completion time in

DC networks for web site load times by using flow priorities

307438438

and switch port buffer occupancies to determine next hop

behavior. However, it requires major changes in several layers

of the networking stack and applications must be modified

to communicate flow priorities for latency-sensitive traffic

scheduling. Baatdaat is much simpler to deploy, requiring

no in-depth knowledge of individual application flows, yet

still significantly reducing flow completion time in congested

networks. MicroTE [5] uses short-term traffic patterns and

partial predictability to achieve its goals. However, with highly

unpredictable DC traffic, it becomes equivalent to, or worse

than, ECMP, and requires significant changes to end hosts as

traffic monitoring duties are pushed to servers.

Other flow scheduling schemes for DCs, such as DCell [21]

and SPAIN [22], use servers to determine packet routing or

relaying, which requires modification to end hosts. As well as

using the servers to choose packet paths, SPAIN also uses pre-

computed traffic traces that exploit redundancies in topologies,

meaning that, unlike Baatdaat, it cannot act upon changes in

network utilization. Modifications to end-hosts are required,

unlike Baatdaat which only requires modifications to a limited

number of switches and the central controller, making it an

almost unfeasible task in DCs with tens of thousands of servers

to update and maintain. DevoFlow [23] aims to replace the

OpenFlow model by reducing control-plane communication,

moving the responsibility for handling most flows to switches

and gathering statistics to identify large flows that are then

handled and scheduled via the controller. Through simulations

they claim to be able to efficiently load-balance data center

traffic. However, we have shown that we are able to gather

statistics at the level of per-link, rather than per-flow, and

continuously share these with the OpenFlow controller to

achieve load balancing with minimal performance impact at

the controller.

VI. CONCLUSION

In this paper we have presented Baatdaat, a novel flow

scheduling system for DC networks. Baatdaat uses a modified

NetFPGA implementation of OpenFlow to directly measure

the temporal, network-wide utilization of the infrastructure

and to subsequently schedule flows over redundant lightly-

utilized shortest and non-shortest paths to further exploit

topological redundancy. Unlike existing flow scheduling al-

gorithms, Baatdaat takes into consideration the current state

of the network to dynamically adapt flow scheduling using

a combination of centralized and distributed logic as well as

hardware acceleration to avoid performance bottlenecks.

Simulation and testbed results have shown that Baatdaat is

topology-neutral and can substantially improve network-wide

utilization while also reducing flow completion times, demon-

strating that avoiding congestion pays off for the slightly

longer paths taken by a subset of flows. Baatdaat reduces

network-wide maximum link utilization by up to 18% over

ECMP and only deviates by 3% from optimal on average,

while it can reduce flow completion times by up to 10%.

Results on the NetFPGA platform demonstrate that traffic

monitoring and real-time flow-level scheduling can be seam-

lessly incorporated into networks with virtually no impact on

network throughput.

REFERENCES

[1] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken,
“The nature of datacenter traffic: Measurements & analysis,” Internet

Measurement Conference (IMC), 2009.
[2] T. Benson, A. Akella, and D. Maltz, “Network traffic characteristics

of data centers in the wild,” Internet Measurement Conference (IMC),
2010.

[3] C. Hopps, “Analysis of an equal-cost multi-path algorithm,” RFC 2992,
IETF, 2000.

[4] A. Greenberg, J. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri, D. A.
Maltz, P. Patel, and S. Sengupta, “VL2: A scalable and flexible data
center network,” ACM SIGCOMM, 2009.

[5] T. Benson, A. Anand, A. Akella, and M. Zhang, “MicroTE: Fine grained
traffic engineering for data centers,” ACM CoNEXT, 2011.

[6] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat,
“Hedera: Dynamic flow scheduling for data center networks,” The 7th

USENIX Symposium on Networked Systems Design and Implementation

(NSDI ’10), 2010.
[7] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,

J. Rexford, S. Shenker, and J. Turner, “OpenFlow: enabling innovation
in campus networks,” SIGCOMM Comput. Commun. Rev., vol. 38, no. 2,
2008.

[8] D. Xu, M. Chiang, and J. Rexford, “Link-state routing with hop-by-
hop forwarding can achieve optimal traffic engineering,” IEEE/ACM

Transactions on Networking, April 2011.
[9] NetFPGA, “http://www.netfpga.org/.”

[10] A. Tavakoli, M. Casado, T. Koponen, and S. Shenker, “Applying nox to
the datacenter,” ACM HotNets, 2009.

[11] Cisco Systems, “Data center: Load balancing data center services
solutions reference nework design march,” 2004.

[12] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data
center network architecture,” ACM SIGCOMM, 2008.

[13] “Open vSwitch: An open virtual switch,” http://openvswitch.org/ .
[14] J. Naous, D. Erickson, G. A. Covington, G. Appenzeller, and N. McK-

eown, “Implementing an OpenFlow switch on the NetFPGA platform,”
ACM/IEEE Symp. on Architectures for Networking and Communications

Systems (ANCS), 2008.
[15] D. Zats, T. Das, P. Mohan, D. Borthakur, and R. Katz, “DeTail: reducing

the flow completion time tail in datacenter networks,” ACM SIGCOMM,
2012.

[16] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken, “The
nature of data center traffic: measurements & analysis,” in Proc. ACM

SIGCOMM Internet Measurement Conference (IMC’09), 2009, pp. 202–
208.

[17] A. Elwalid, C. Jin, S. Low, and I. Widjaja, “Mate: Mpls adaptive traffic
engineering,” IEEE INFOCOM, 2001.

[18] H. Wang, H. Xie, L. Qiu, R. Yang, Y. Zhang, and A. Greenberg, “Cope:
Traffic engineering in dynamic networks,” ACM SIGCOMM, 2006.

[19] S. Kandula, D. Katabi, B. Davie, and A. Charny, “Walking the tightrope:
Responsive yet stable traffic engineering,” ACM SIGCOMM, 2005.

[20] A. Greenberg, P. Lahiri, D. A. Maltz, P. Patel, and S. Sengupta,
“Towards a next generation data center architecture: scalability and
commoditization,” Proc. ACM workshop on Programmable routers for

extensible services of tomorrow (PRESTO), 2008.
[21] C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, and S. Lu, “DCell: A scalable

and fault-tolerant network structure for data centers,” ACM SIGCOMM,
2008.

[22] J. Mudigonda, P. Yalagandula, M. Al-Fares, and J. C. Mogul, “SPAIN:
COTS data-center ethernet for multipathing over arbitrary topologies,”
NSDI, 2010.

[23] A. Curtis, J. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, and B. S.,
“Devoflow: Scaling flow management for high-performance networks,”
ACM SIGCOMM, 2011.

308439439

