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Abstract—In modern Cloud Data Centers (DC)s, correct
implementation of network policies is crucial to provide secure,
efficient and high performance services for tenants. It is reported
that the inefficient management of network policies accounts for
78% of DC downtime, challenged by the dynamically changing
network characteristics and by the effects of dynamic Virtual
Machine (VM) consolidation. While there has been significant
research in policy and VM management, they have so far been
treated as disjoint research problems.

In this paper, we explore the simultaneous, dynamic VM and
policy consolidation, and formulate the Policy-VM Consolidation
(PVC) problem, which is shown to be NP-Hard. We then propose
Sync, an efficient and synergistic scheme to jointly consolidate net-
work policies and virtual machines. Extensive evaluation results
and a testbed implementation of our controller show that policy
and VM migration under Sync significantly reduces flow end-
to-end delay by nearly 40%, and network-wide communication
cost by 50% within few seconds, while adhering strictly to the
requirements of network policies.

I. INTRODUCTION

As Cloud computing sees widespread adoption, data cen-
ters (DCs), the underpinning infrastructures, are challenged by
the increased complexity of network management in which
the configuration of (virtualized) server connectivity is dic-
tated by numerous of network policies. In order to imple-
ment the desired network policies to ensure security and
high performance, operators typically deploy a diverse range
of “middleboxes” (MBs), such as firewalls, load balancers,
Intrusion Detection and Prevention Systems (IDS/IPS), and
application acceleration boxes [1]. In particular, one of the
design requirements for today’s Cloud DCs is to support the
insertion of new MBs [2][3]. As a result, the number of MBs
is on par with the number of routers and switches in enterprise
networks [4]. Recent studies have also shown that the advent
of diverse consumer devices will further increase the demand
for in-network services [5]. Clearly, the added number of
intermediate networking devices has in turn added a sheer
degree of difficulty to network management. Research liter-
ature has demonstrated that deploying applications in Cloud
DCs without considering in-network policies can lead to up to
91% policy violations, since network policies demand traffic
to traverse a sequence of specified MBs [6]. Policy violations
will potentially lead to severe consequences, including network
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outage, performance degradation [7], security vulnerabilities
(e.g., firewall bypassing) or data leakage [4][6]. We argue that
this challenge is amplified by the dynamism of traffic reloca-
tion as a result of dynamic Virtual Machine (VM) migration
in today’s virtualized DCs since when a VM is migrated, all
related flows must be updated across the network [2].

Significant amount of research has been put into the areas
of network policy and VM management, respectively. How-
ever, dynamic VM and network policy consolidation have been
so far addressed in isolation. In the area of policy management,
recent studies have focused primarily on exploiting Software-
Defined Networking (SDN) [8] and Network Function Virtu-
alization (NFV) [9], assuming a static allocation of compute
resources. The centralized global view of the network provided
by SDN can be exploited to programmatically ensure cor-
rectness of MB traversal. Coupled with SDN, software-based,
virtualized network functions can be consolidated on demand.
SDN and NFV have enabled a new paradigm for enforcing
and dynamically migrating MB policies [8][10][11][12][13].
At the same time, VM management has largely concentrated
on the efficient placement, consolidation and migration of
Virtual Machines (VMs) to maximize server-side resources
(such as CPU, RAM and network I/O,energy efficiency),and
optimize application-related SLA [14][15]. However, there has
been no work on dynamic VM consolidation in conjunction
with dynamic policy re-configuration to optimize the network-
wide communication cost. We argue that treating VM and
policy management separately can lead to suboptimal network
utilization and policy violations.

To see why, consider the following example scenarios as
depicted in Fig. 1 where the traffic flows from v1 to v2 are
configured to be checked by an IPS (the path is shown in
solid blue line). (1) Violation - MB capacity overloaded: As
shown in Fig. 1a, since the capacity of each IPS is constrained
by their processing rate, migrating policies from IPS1 to an
overloaded IPS2 will lead to the packets of this flow being
rejected. (2) Violation - route unreachable: As demonstrated in
Fig. 1b, assuming s2 and LB1 are behind VLAN1, while s3 is
behind VLAN2, then flows from v1 to v2 are configured to be
checked by IPS1 and load balancer LB1. If we migrated v2
to s3, packets of the flow will fail to be sent to v2 if the policy
requirement is enforced. (3) No violation - suboptimal network
utilization: We demonstrate two cases in Fig. 1c. If we only
consider VM migration, for example using S-CORE [15], a
network-aware communication cost reduction scheme, v2 will
be migrated to s1 to be collocated with v1 in a bid to reduce



the VM-to-VM communication cost. Alternatively, only policy
migration might be considered, using, for example, CoMb [11]
to migrate policies from IPS1 to IPS2. However, in neither
of the above cases the true communication cost is improved,
since the traversal path between v1 and v2 will remain the
same length and use overloaded links. An ideal solution is to
consider both policy and VM migration by migrating VM v1 to
s1 and also migrating the traffic inspection policies concerning
v1 and v2 from IPS1 to IPS2.

The above observations call for a new policy management
scheme which can adapt to dynamic policy re-configurations
as a result of VM migrations, and reinforce network policy
in Cloud DC environments. Our initial effort has shown
that policy-aware dynamic VM consolidation can remarkably
improve network utilization [16], [17].

In this paper, we study the joint dynamic policy and VM
migration problem on top of a SDN-based environment. We
initially formulate and model the problem based on legacy
hardware-based MBs due to three reasons. Firstly, they are
ubiquitously available in today’s DCs. Secondly, there have
been concerns regarding the efficiency of fully virtualized
implementations (i.e., NFV) [10]. Lastly, legacy hardware-
based MBs can support in-network policy deployment [2][6].
Nevertheless, we also show that our SDN-based scheme can be
easily extended to support a NFV environment in Section III-F.
We demonstrate that joint optimization of dynamic VM and
policy migration can achieve significant network cost savings
while still adhering to network policy requirements. By mod-
elling the communication cost among MBs and applying stable
matching theory in the allocation of VMs, we propose Sync, a
Synergistic policY and virtual machiNe Consolidation scheme,
which enables consolidation of both policies and VMs while
reducing the network-wide communication cost.

The remainder of this paper is structured as follows.
Section II describes the model of joint policy and VM con-
solidation, and defines the communication cost and utility for
both VM and policy migration. An efficient Sync scheme is
proposed in Section III. Section IV evaluates the performance
of the proposed scheme. Section V outlines related works, and
Section VI concludes the paper.

II. PROBLEM MODELING

A. Overview

We consider a multi-tier DC network which is typically
structured under a multi-root tree topology such as canoni-
cal [18] or folded clos network [19][20].

Let V = {v1, v2, . . .} be the set of VMs in the DC hosted
by the set of servers S = {s1, s2, . . .}. The vector ri denotes
the physical resource requirements of VM vi. For instance,
ri could have three components that capture three types of
physical hardware resources, such as CPU cycles, memory
size, and I/O operations 1. Accordingly, the available amount

1In this paper, we assume that the size of a slice is a multiple of an atomic
VM. For example, if the atomic VM has one 1 GHz CPU core, 512 MB
memory and 10 GB storage, then a VM of size 2 means it effectively has a
2 GHz CPU core, 1 GB memory and 20 GB hard disk storage. Such atomic
sizing is common among large-scale public clouds to reduce the overhead of
managing hundreds of thousands of VMs, and is widely adopted in research
literature [21] to reduce the dimensionality of the problem.

of physical resource of server sj is given by a vector hj . Hence
we use

∑
vk∈A(sj)

rk+ri � hj to denote that sj has sufficient
physical resource to accommodate vi, where

∑
vk∈A(sj)

rk is
the total requirements of all VMs hosted by sj .

Let M = {m1,m2, . . .} be the set of all MBs
in DC. Each MB mi has several important properties
{type, state, capacity}. The property mi.type defines the
function of mi, e.g., IPS (Intrusion Prevention System), RE
(Redundancy Elimination), or FW (Firewall). MBs are usually
stateful and need to process both directions of a session for
correctness. mi.state is used to store the internal state and
processing logic for mi. The mi.capacity is essentially the
throughput of mi.

There are various deployment points for MBs in DC. They
can be on the networking path or off the physical network [7].
Following the recent Cisco guidelines [3], we consider MBs
are attached to aggregation switches for improved flexibility
and scalability of policy deployment. These MBs may belong
to different applications, deployed and configured by a Policy
Controller. The centralized Policy Controller monitors the
liveness of MBs, including addition or failure/removal of a
MB. Network administrators can specify and update policies
through the Policy Controller.

Traffic in DC is largely flow-based [20]. In light of this,
we define DC traffic as F = {f1, f2, . . .}. For each flow
fi ∈ F, the properties fi.src and fi.dst specify the source
and destination VMs of fi respectively, e.g., fi.src = v1 and
fi.dst = v2. The data rate of fi.rate is represented by data
exchanged from VM fi.src to VM fi.dst per time unit2.

The set of policies is P. In reality, one policy can be
applied to multiple flows and vice versa. However, for ease
of discussion, we assume that flows and policies are one
to one correspondence. For each fi ∈ F, there is a policy
pi. pi.seq defines the sequence of MB types that all flows
matching policy pi should traverse in order, e.g., pi.seq =
{FW, IPS, Proxy}. pi.len denotes the size of the MB list.
pi.list is the list of MBs that are assigned to pi to fulfill
the traversal requirement defined in pi.seq. Specially, pi = ∅
means fi is not governed by any policies.

We denote pi.in and pi.out to be the first (ingress) and
last (egress) MBs, respectively, in pi.list. Let P (vi, vj) be
the set of all policies defined for traffic from vi to vj , i.e.,
P (vi, vj) = {pk|pk 6= ∅, fk.src = vi, fk.dst = vj ,∀pk ∈ P}.

Policy pi is called satisfied, if and only if all required MBs
are allocated to pi with the correct types and order:

m.type ==pi.seq[j],

∀ m = pi.list[j], j = 1, . . . , pi.len
(1)

where pi.seq[j] is the jth type of MB that need to be traversed
in pi.seq.

B. Communication Cost with Policies

We denote R(ni, nj) as the routing path between nodes
(i.e., servers, MBs or switches) ni and nj . L ∈ R(ni, nj) if

2There are a handful of research literature, e.g., [22], about deriving real
time traffic matrices in DC networks.
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Fig. 1: Examples of policy violations: Migrating policy or VMs separately make no improvement on efficiency. Solid blue:
original flow path; dash blue: only migrate VM; dash red: only migrate policy; dash green: migrate both VM and policy.

link L is on the path. For a flow fi, where pi 6= ∅, its actual
routing path is:

Ri(fi.src, fi.dst) = R(fi.src, pi.in)

+

pi.len−1∑
j=1

R(pi.list[j], pi.list[j + 1])

+R(pi.out, fi.dst)

(2)

The cost of each link in DC networks varies on the
particular layer that they interconnect. High-speed core router
interfaces are much more expensive (and, hence, oversub-
scribed) than lower-level ToR switches [23]. Therefore, in
order to accommodate a large number of VMs in the DC and
at the same time keep providers’ investment cost low from
a providers perspective, utilization of the “lower cost” switch
links is preferable to the “more expensive” router links. Let ci
denote the link weight for Li. In order to reflect the increasing
cost of high-density, high-speed (10 Gb/s) switches and links at
the upper layers of the DC tree topologies, and their increased
over-subscription ratio [19], we can assign a representative link
weight ωi for an ith-level link per data unit. Without loss of
generality, in this case ω1 < ω2 < ω3.

Hence, we define the Communication Cost of all traffic
from VM vi to vj as

C(vi, vj) =
∑

pk∈P (vi,vj)

fk.rate
∑

Ls∈Rk(vi,vj)

cs

=
∑

pk∈P (vi,vj)

{Ck(vi, pk.in)

+

pk.len−1∑
j=1

Ck(pk.list[j], pk.list[j + 1])

+ Ck(pk.out, vj)}
(3)

where Ck(vi, pk.in) = fk.rate
∑

Ls∈R(vi,pk.in)
cs is the com-

munication cost between vi and pk.in for flows which matched
pk. Similarly, Ck(pk.out, vj) is the communication cost be-
tween pk.out and vj for pk, and Ck(pk.list[j], pk.list[j + 1])
is the communication cost between pk.list[j] and its successor
MB in pk.list.

For a free flow fi, which is not governed by any policies,
i.e., pi = ∅, its communication cost is calculated directly
between the source and destination VMs. Unless otherwise
stated, we only consider policy flows for ease of discussion in
the rest of the paper.

C. Policy and VM Consolidation Problem

We denote A to be an allocation of both VMs and MBs.
A(vi) is the server which hosts vi, and A(sj) is the set of VMs
hosted by sj . A(pk) is the set of MBs which are allocated to
policy pk, i.e., pk.list. A(ml) refers to all flow policies that
use ml as a node on its path.

The Policy-VM Consolidation (PVC) problem is defined as
follows:

Definition 1. Given the set of VMs V, servers S, policies P
and MBs M, we need to find an allocation A that minimizes
the total communication cost:

min
∑
vi∈V

∑
vj∈V

C(vi, vj)

s.t. A(vi) 6= ∅ && |A(vi)| = 1,∀vi ∈ V
pk is satisfied,∀ pk ∈ P∑

vi∈A(sj)
ri � hj ,∀sj ∈ S∑

pk∈A(mi)
fk.rate ≤ mi.capacity,∀mi ∈M

(4)

The first constraint ensures that each VM is hosted by one
server. The second constraint is to fulfill all policy require-
ments on MBs traversal. The third and fourth constraints are
the capacity requirements for both servers and MBs.

Theorem 1. The PVC problem is NP-Hard.

Proof: To show that PVC problem is NP-Hard, we will
show that the Multiple Knapsack Problem (MKP) [24], whose
decision version has already been proven to be strongly NP-
complete, can be reduced to this problem in polynomial time.

Consider a special case of the PVC problem: there are only
two servers, i.e., s1 and s2, connecting to two different edge
switches. Their capacity are all equal to n, i.e., h1 = h2 = n.



All 2n VMs are divided into two groups, each one has n VMs.
The resource requirement of each VM is 1, i.e., ri = 1,∀i =
1 . . . 2n. There are n flows, and each flow is from a distinct
VM of group 1 to another distinct VM of group 2. All flows are
policy flows and need to traverse three MBs in sequence, e.g.,
LB, RE and IPS. There are only one LB box, one IPS box and
multiple RE boxes. The LB and IPS boxes are attached to the
edge switches connected to s1 and s2 respectively. Suppose
the capacity of LB and IPS are enough to accept all flows.
Thus, a reasonable solution is to migrate all VMs of group 1
to s1 and all VMs of group 2 to s2. Then, the PVC problem
becomes to find an appropriate RE box for each flow.

Consider each flow fi to be an item, where fi.rate is item
size. Each RE box is a knapsack with limited capacity. The
profit of assigning fi to each RE box is the negative of the
communication cost defined in Equation (3). The PVC problem
becomes finding an allocation of all flows to RE boxes,
maximizing the total profit. Therefore, the MKP problem is
reducible to the PVC problem in polynomial time, and hence
the PVC problem is NP-hard.

III. SYNERGISTIC POLICY AND VM CONSOLIDATION

In this section, we introduce Sync, a Synergistic policY and
virtual machiNe Consolidation scheme.

A. VM Migration and Cost

Considering a migration for VM vi from its current allo-
cated server A(vi) to another server ŝ: A(vi)→ ŝ, the feasible
space of candidate servers for vi is characterized by:

S(vi) = {ŝ|(
∑

vk∈A(ŝ)

rk + ri) � ĥ,∀ŝ ∈ S \A(vi)} (5)

Considering that vi is hosted on sj , i.e., A(vi) = sj , let
Ci(sj) be the total communication cost induced by vi between
sj and all ingress & egress MBs associated with vi:

Ci(sj) =
∑

pk∈P (vi,∗)

Ck(vi, pk.in) +
∑

pk∈P (∗,vi)

Ck(vi, pk.out)

(6)

Migrating a VM also generates network traffic between the
source and destination hosts. The amount of traffic depends
on the memory size of the VM, its page dirty rate, the avail-
able bandwidth for the migration and some other hypervisor-
specific constants [25]. We use the model for estimating
migration cost defined in [25]:

Cm(vi) =M · 1− (R/L)n+1

1− (R/L)
(7)

where n = min(dlogR/L
T ·L
M e, dlogR/L

X·R
M ·(L−R)e) is the

number of pre-copy cycles, M is the memory size of vi, R is
the page dirty rate, and L is the bandwidth used for migration.
X and T are user settings for the minimum required progress
for each pre-copy cycle and the maximum time for the final
stop-copy cycle, respectively [25].

Such migration cost should not outweigh the reduction in
the overall communication cost. We then define the utility
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Fig. 2: Policy migration among MBs

of migration A(vi) → ŝ to be the expected benefit through
migration:

U(A(vi)→ ŝ) = Ci(A(vi))− Ci(ŝ)− Cm(vi) (8)

Specifically, U(A(vi)→ ŝ) = 0 if no migration takes place.

B. Policy Migration and Cost

When performing policy migration, to preserve the cor-
rectness and fidelity of active flows, the destination MB must
receive the internal MB state associated with the migrated
flows, while the old MB still keeps the internal state associated
with remaining flows. Clearly, the MB states must be able to be
cloned, shared, moved and merged. To support this, we adopt
the architecture of OpenNF [12], which is a control plane with
carefully designed APIs for managing MBs and policies.

Fig. 2 presents an example of migrating a policy flow
from IPS1 to IPS2. The internal logic state of IPS1 will
be first migrated to IPS2, e.g., step (2). Next, the network
configuration will be updated to forward all new traffic to
IPS2, e.g., step (3). Some clean-up work may also required to
maintain the consistence after migration, e.g., step (4). Denote
σik to be the total traffic induced to transmit the internal states
size of mi for policy pk.

Let (pk, i) → m̂ denote migrating the ith MB of pk, i.e.,
m′ = pk.list[i], to a new MB of m̂. The feasible space of
candidate MBs for m̂ is characterized by:

M(pk, i) = {m̂|m̂.type == m′.type,∑
pj∈A(m̂)

fj .rate ≤ m̂.capacity − fk.rate,

∀m̂ ∈M \m′}

(9)

We assume that the MBs assignment for policy pk is an
atomic operation, i.e., either all required MBs are assigned for
pk or none is assigned. In the following, we suppose pk is
assigned, and consider policy migration on intermediate MBs
(i.e., pk.list[i],∀i = 2, . . . , pk.len − 1) and end MBs (i.e.,
pk.in and pk.out) of pk.list, respectively.

1) Migration on Intermediate MBs Associated Policies:
We start from the simplest case that performing migration of
pk on only one attached MB.

Define the utility of migration (pk, i)→ m̂ as the commu-
nication cost reduction gained substract the cost induced by
the policy migration:

U((pk, i)→ m̂) = Ck(pk.list[i− 1],m′) + Ck(m
′, pk.list[i+ 1])

− Ck(pk.list[i− 1], m̂)− Ck(m̂, pk.list[i+ 1])

− σik
(10)
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If migration of pk involves two or more attached MBs
along the policy path, we can migrate pk on these MBs one
by one. Utilities of different migration orders can be easily
proved to be equal through Fig. 3a.

2) Migration on End MBs Associated Policies: End MBs
for pk involves the migration of either pk.in (pk.in→ m̂) or
pk.out (pk.out → m̂). The key difference of utility between
policy migration on end MBs and intermediate MBs is that
VMs are included in calculating the cost, as end MBs of
policies communicate directly with src/dst VMs. Hence, the
utility for migration of pk.in→ m̂ is:

U(pk.in→ m̂) = Ck(fk.src, pk.in) + Ck(pk.in, pk.list[2])

− Ck(fk.src, m̂)− Ck(m̂, pk.list[2])

− σik
(11)

The utility for migration of pk.out → m̂ is similar to
Equation (11).

C. Decomposable Migration

Based on above analysis, we can easily observe that, for
a single flow, the migration of VMs and policies are all
decomposable. It means the migration order on src/dst VMs
and each MB are independent and the final utilities of all
migrations remain the same.

Without loss of generality, we use the example in Fig. 3b.
We consider migration on portion of a flow, i.e., migration of
a source VM which is hosted on s1, and policy migration on
the ingress MB m1 and one intermediate MB m2. According
to the utility definitions of both VM and policy migrations in
Equations (8), (10) and (11), we can easily show that:

U((s1,m1,m2)→ (ŝ1, m̂1, m̂2)) =

U(s1 → ŝ1) + U(m1 → m̂1) + U(m2 → m̂2)
(12)

Equation (12) describes an important property of VM and
Policy migration: we can treat all MBs and VMs at both
endpoints of the flow independently during migration.

D. Communicating VMs Groups

Operating our Sync scheme on all VMs and policies in a
DC would be computationally impractical and would introduce
intolerable delays. We consider simplifying the problem by
dividing VMs into isolated groups according to their pairwise
communication patterns.

A Communicating VMs Group G is defined as a set of VMs
where every VM is communicating with at least one other VM

Algorithm 1 GetNextCommunicatingVMsGroup()

Input: Vr,F
Output: Next communicating VMs group G, if any

1: G = ∅
2: if Vr 6= ∅ and ∃vi, vi ∈ Vr then
3: G = {vi}
4: F = {flows related to vi}
5: while F 6= ∅ and ∃fj , fj ∈ F do
6: if fj .src 6∈ G then
7: v′ = fj .src
8: else if fj .dst 6∈ G then
9: v′ = fj .dst

10: else
11: continue;
12: end if
13: G = G ∪ {v′}
14: F = F ∪ {flows related to v′}
15: F = F \ {fj}
16: end while
17: end if
18: Vr = Vr \G
19: Output a communicating VMs group G

in the group and none of them is communicating with VMs
outside the group, i.e.,

∀vi ∈ G, ∃fj , vi ∈ {fj .src, fj .dst}
And
6 ∃fj , fj .src ∈ G ∧ fj .dst 6∈ G or

fj .src 6∈ G ∧ fj .dst ∈ G

(13)

Because we consider a multi-tenant DC environment, such
isolated groups always exist. In the worst case, all VMs of a
tenant belong to a single group. Those groups can be easily
found by either depth first search (DFS) or breadth first search
(BFS) operating on the active flows at the DC. Algorithm 1
shows an example using BFS. The set of VMs Vr refers to all
VMs that remain to be processed. Initially, Vr can be all VMs.
Any dynamics, e.g., VM or traffic changes, will cause related
VMs to be added to Vr.

E. Sync Migration Algorithms

In the following, we propose a Sync scheme utilizing the
property of decomposability. When Vr 6= ∅, a communicating
VM group G will be obtained through Algorithm 1 and the
Sync migration algorithms will be triggered. The whole scheme
is comprised of two phases - migration of policies and VMs,
respectively - to reduce the total communication cost.

1) Phase I: Policy Migration: A VM usually has multiple
concurrent active flows, making it difficult to determine op-
timal VM migration. Therefore, in Phase I, we only migrate
policies, while preparing for the migrations of VMs by building
the preference matrix for servers.

For a flow fi which needs to traverse n = pi.len MBs, we
define its Cost Network, which is a (n+2)-tier directed graph.
Flows originate from the source (fi.src) and terminate at the
sink (fi.dst). The first (or the last) tier includes all possible
servers that can accept the fi.src (or fi.dst) VM for migration



Algorithm 2 Phase I: Policy Migration

Input: A communicating VMs group G,S,F,P,M
Output: New allocation of MBs for policies

1: F ← related flows of group G
2: for each fk ∈ F do
3: pk =the policy applied on fk
4: Construct the Cost Network N
5: (ssrc, sdst,mlist) = SPF(N)
6: for i = 1 to mlist.len do
7: if pk.list[i] 6= mlist[i] then
8: Perform policy migration: pk.list[i] →
mlist[i]

9: end if
10: end for
11: Update routing for policies
12: ρ(ssrc, fk.src) += 1 . Update preference matrix
13: ρ(sdst, fk.dst) += 1
14: end for

according to Equation (5), as well as its current host server.
Similarly, the middle n tiers are all possible MBs defined
in Equation (9). The weight of each edge is initialized as
the corresponding communication cost between two connected
nodes, plus migration cost. More specifically, the weight of
edges connected to source/sink are the migration cost of
source/destination VMs. Fig. 4 shows an example of Cost
Network for flow fk, which needs to traverse {IPS,RE}.
v0 is currently hosted on si, so the weight from source to si
is 0, and weight to sj is migration cost Cm(v0).
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RE1

Source

(v0)
Sink

(v1)

0

IPS2

IPS1

0

Cm(v1)

..
.

..
.

Cm(v0)

Ck(si,IPS1) Ck(IPS1,RE1) Ck(RE1,sn)

Ck(sj,IPS1)+σ1i Ck(IPS2,RE2)+σ2i
Ck(RE2,sm)

Ck(sj,IPS1)

Ck(si,IPS2)+σ1i

Ck(IPS1,RE1)

Ck(IPS1,RE2)+σ2i

Ck(RE2,sn)

Ck(RE1,sm)

Fig. 4: Cost Network Example: Suppose the current path for
flow fk from v0 to v1 is si → IPS1 → RE1 → sn.

Clearly, the route with the largest utility for a flow is the
shortest path from source to sink. Thus, we propose the Policy
Migration Algorithm, shown in Algorithm 2, to minimize the
total communication cost through the migration of policies.
The function call (ssrc, sdst,mlist) = SPF(N) returns the
shortest path for fk, where ssrc is the source server, sdst
is the destination server and mlist is the list of MBs, e.g.,
(s1, s2, {m1, . . . ,m2}).

A S × V preference matrix ρ is maintained to help future
VM migration, where S and V are the number of input servers
and VMs. ρ(s, v) is the score of VM v, which is given by
server s. ρ(s, v) is initialized to be zero, and will be increased
each time if a flow fk, either to or from v, chooses s for its
shortest path in Algorithm 2.

2) Phase II: VM Migration: According to Equation (8),
migrating vi to a different server will yield different utility,
which means vi can rank order candidate servers for migration.
In the mean time, during policy migration, each server also has
presented their preference to all VMs through the preference

matrix ρ(s, v). Those preferences can be presented in a ranked
order list. For example, denote li = {v1, v2, . . .} to be the
preference list of si over all possible VMs, and v2 ≺li v1
means si prefer v1 to v2. Moreover, each VM also has resource
requirements when it is assigned to a server whose availability
of resources is limited. The preferences of servers and VMs
might be inconsistent. This makes it difficult to determine
migration destination of each VMs.

To overcome this, we model the VM migration problem
above to be a typical many-to-one stable matching, hence
Stable Marriage [26]. The key concept of stable matching is
stability. Before explaining the stability, we will first define
the blocking pair.

Definition 2. For an allocation A, a VM-server pair (vi, sj)
is a blocking pair if A(vi) 6= sj and 3

∑
vk∈A(sj) && vi≺lj

vk
rk + ri � hj (14)

where lj is the preference list of sj over all VMs, vi ≺lj vk
means sj prioritize vk over vi according li.

A stable matching means no blocking pair exists in the
final matching of VMs to servers. Thus, an unstable matching
between VMs and servers will always leave room to minimiz-
ing the total communication cost, while a stable matching is
the optimal assignment for both VMs and servers.

We then apply our modified Gale-Shapley algorithm [26] to
address the conflict of preferences and efficiently output stable
matching between VMs and servers, shown in Algorithm 3.
Initially, all VMs are unmatched. For such a VM, say vi,
Â(vi) = ∅. vi will be first matched to its most preferred
server in S(vi), say server sj , which has not yet rejected
vi and can gain the largest utility for vi (line 5∼6). If
sj has sufficient capacity in the matching Â, it accepts vi.
Otherwise, it sequentially rejects less preferable VMs, which
were allocated to sj previously (line 9∼10). Whenever sj
rejects a VM, it updates the best rejected variable (line 11),
which indicates the most preferred VM that rejected by sj
currently. In the end, all VMs ranked lower than best rejected
will remove sj from their preference list by adding sj to their
blacklists (line 13∼15).

Theorem 2. Algorithm 3 can always output a stable matching
in O(V S), where V and S are the number of input VMs and
servers respectively.

Proof: We can prove the stability of the output matching
by contradiction. Suppose that the Algorithm 3 produces a
matching Â with a blocking pair (vi, sj), i.e., there is at least
one VM v′ ∈ Â(sj) worse than vi to sj . vi must have proposed
to sj and been rejected by sj . v′ should have either been
rejected by sj before, or sj should have been added to its
blacklist when vi was rejected (in line 14). Thus, v′ 6∈ Â(sj),
which contradicts the assumption. In the worst case, each VM
is rejected by every server. So, Algorithm 3 will always be
terminated and output a stable matching within O(V S).

3Considering the complexity and existence of a stable matching, we only
consider one type of blocking pair. For more information about the blocking
pair and stability, please refer to [21]



Algorithm 3 Phase II: VM Migration

Input: A Communicating VMs Group g,S, ρ
Output: New allocation of servers-VMs Â

1: Obtain preference list li according to ρ, ∀si ∈ S
2: Initialize blacklist bj = ∅, ∀vj ∈ g
3: Â = ∅
4: while ∃vi, and Â(vi) = ∅ do
5: sj ← argmaxs∈S(vi)\bi U(A(vi)→ s) . U > 0

6: Â(vi) = sj
7: if

∑
vk∈Â(sj)

rk � hj then
8: repeat
9: vk ← last VM in Â(sj) according to lj

10: Â(vk) = ∅ . sj rejects vk
11: best rejected← vk
12: until

∑
vk∈Â(sj)

rk � hj
13: for each vk ∈ lj , vk �lj best rejected do
14: bk = bk ∪ sj . Add sj to the blacklist of vk
15: end for
16: end if
17: end while
18: Perform VMs migration: A→ Â
19: Update routing for VMs

F. Extension to NFV

A NFV infrastructure enables the execution of traditional,
hardware-based middleboxes as software-based virtual net-
work functions, typically encapsulated in VMs [9] and hosted
on the same hypervisors as traditional VMs. While placing
the network functions to the lowest layer of the network
infrastructure (hypervisors) gives more flexibility for their
dynamic placement, it also makes network-wide resource
management crucial to avoid sub-optimal network utilization.
In order to apply our Sync algorithms to NFV infrastructures,
the migration cost of the policies and the calculation of the cost
networks (Section III-B) should reflect the cost of migrating
the VMs hosting the network functions instead of transferring
only MB states between hardware-based MBs. We note that
this is the only difference between applying Sync to legacy
hardware and NFV software MBs. The communication cost
(Section II-B) and migration cost of the VMs (Section III-A)
can be obtained in the same way as with hardware-based MBs.

Since SDN aggregates the network-wide control logic into
a logically centralized software component, it can enable
policies, configuration, and network resource management to
be programmed in a convenient and simplified way. When
a new flow arrives to the network, our SDN-based Policy
Controller checks for matching policies, allocates a path to
ensure the network function traversal requirements are met,
and installs the corresponding configuration information to
flow tables of all switches/routers along the path. Similar to the
situation in the network of legacy hardware MBs, the initially
allocated path might not be the most efficient (e.g., a VM uses
a network function hosted on a distant server), we ensure that
our controller collects flow statistics and runs our Sync scheme
periodically to mitigate inefficiencies.

IV. EVALUATION

A. Simulation Setup and Results

We have evaluated the performance of Sync scheme over a
simulated fat-tree DC topology with k = 14 (i.e., 931 nodes,
including 686 servers and 245 switches) in ns-3. VMs are mod-
eled as a collection of socket applications communicating with
one or more other VMs in the DC network. We define policy
flows as traffic flows that have to traverse a sequence of MBs as
specified in their governing policies, and policy-free flows that
are not subject to any network policies. In all experiments,
all traffic flows are randomly generated during initialization
and are composed of 20% policy-free flows and 80% policy
flows. Each policy flow is configured to traverse 1∼3 MBs,
such as, a firewall, IPS and/or LB. As a result, the average
path length for each flow is 8.3 hops. A centralized controller
is implemented to collect all network information and perform
the Sync scheme. In order to compare against policy-agnostic
VM management, we have also implemented S-CORE [15],
which is a network-aware dynamic VM migration scheme that
reduces network-wide communication cost through localizing
heavy-bandwidth communicating VM pairs.

Fig. 5 shows the performance of Sync with a focus on two
key factors of DC networks: communication cost and end-to-
end delay between hosts. We can easily observe from Fig. 5a
that Sync significantly reduces network-wide communication
cost by about 50% for all topology scales, i.e. k = 4 to
14. Specifically, Fig. 5b shows the CDF of communication
cost for each flow when k = 14. In comparison, S-CORE
only reduces the communication cost by 7.43% due to its
intrinsic policy-agnostic nature. This is evidenced by Fig. 5c,
which illustrates the CDF of the length of flow paths after
running Sync and S-CORE, respectively. Fig. 5c shows that
Sync significantly reduces the average flow path length from
8.3 hops to 4.3 hops, a nearly 48% improvement, as opposed
to merely 3.2% of that of S-CORE which fails to consider
that traffic flows of migrated VMs might have to traverse even
longer paths if policies are not migrated accordingly. As a
result of shorter flow path length, Fig. 5d demonstrates that
Sync can reduce the average end-to-end delay from 125 us to
76 us (38.8% improvement), compared to 121 us for S-CORE
(2.6% improvement). We note that being able to reduce end-to-
end delay is an important feature since it implies that Sync can
potentially improve flow completion time to a similar extent.

Fig. 6 reveals more details of the performance of Sync on
policy and VM migration. Fig. 6a shows that the number of
VM and policy migrations for the Sync increases linearly with
the number of active VMs. More interestingly, if we contrast
this with that of S-CORE, which also increases linearly, it is
obvious that Sync only migrates half the number of VMs re-
quired by S-CORE. This is crucial since the network overhead
for migrating VMs is a lot more expensive than migrating
network policies. Fig. 6b shows the total utility gained for each
policy (Equation 10 and 11) and VM migration (Equation 8).
More interestingly, we can see from Fig. 6b that the utility
gained through policy migrations is almost 3 times higher
than migrating VMs, contributing 72.87% on average for the
overall utility. In comparison, while S-CORE’s utility on VM
migration as defined by Equation (8) is comparable to its
counterpart in Sync, its overall utility is only a small fraction,
14.6%, of that of the Sync scheme.



0 200 400 600 800 1000
0

0.5

1

1.5

2

2.5
x 10

8

Number of Nodes

T
o
ta

l 
C

o
m

m
u
n
ic

a
ti
o
n
 C

o
s
t

 

 

Initial
Cost After Two−way
Cost After S−CORE

(a) Total Cost

0 0.5 1 1.5 2 2.5

x 10
5

0

0.2

0.4

0.6

0.8

1

Cost of flow

C
D

F
 o

f 
fl
o

w
 c

o
s
t

 

 

Initial Cost

Two−way (After)

S−CORE (After)

(b) Cost of flows for k = 14

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

End−to−end route length

C
D

F
 o

f 
ro

u
te

 l
e
n
g
th

 

 

Initial
Two−way (After)
S−CORE (After)

(c) Route length of flows

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

End−to−end Delay (us)

C
D

F
 o

f 
E

n
d
−

to
−

e
n
d
 D

e
la

y

 

 

Initial
Two−way (After)
S−CORE (After)

(d) End-to-end Delay

Fig. 5: Sync Performance

0 1000 2000 3000 4000 5000
0

500

1000

1500

2000

2500

Number of VMs

N
u
m

 o
f 
M

ig
ra

io
n
s

 

 

# of VM migration (Two−way)
# of Policy migration (Two−way)
# of VM migration (S−CORE)

(a) Number of Migrations

110 322 794 1516 2664 4126
0

2

4

6

8

10

12
x 10

7

Number of VMs

U
ti
lit

y
 o

f 
M

ig
ra

ti
o
n
s

 

 

VM Migration Utility (TwoWay)
Policy Migration Utility (TwoWay)
VM Migration Utility (S−CORE)

(b) VM & Policy Migration Utility

0 500 1000 1500 2000 2500
0

2

4

6

8

10

Number of Policies

P
e

rc
e

n
ta

g
e

 (
%

)

 

 

Policies Violations (Two−way)
Policies Violations (S−CORE)
MBs involved (S−CORE)

(c) Policy violations and MBs involved

Fig. 6: Policy and VM Migrations

Next, we explore the cases of policy violation as depicted
in Fig. 1. Intuitively, we can observe from Fig. 6c that Sync
scheme, by considering only feasible servers and MBs in con-
structing the Cost Network for both VM and policy migrations,
can successfully avoid policy violations. On the contrary, S-
CORE violates 8.75% of policies on average as a result of its
policy-agnostic VM migration decisions. Since one policy is
often implemented by multiple MBs, we have recorded 5.7%
of all MBs being part of the violations. Albeit small fraction,
this actually translates to enormous number, i.e. hundreds, of
MBs. Apart from potential security vulnerabilities, this also
implies that it could be very difficult to pinpoint the problems
manually when policy violations happen.

B. Testbed Results on Controller Performance

We have implemented the central controller for the pro-
posed system on top of the Ryu SDN controller, running on
an CentOS 6 host with Intel 2.1GHz CPU and 4GB of memory.
The controller is responsible for the collection of flow statistics
from the network, running the Sync migration algorithms and
initiating the policy and VM migrations. Flow statistics are
collected from all software switches (Open vSwitch 2.3.1)
operating at the hypervisors to be able to account for all
VM communication [27]. We considered two ways of col-
lecting flow statistics. One could periodically pull OpenFlow
flow statistics from all hosts to retrieve fine-grained statistics.
According to our measurements, this is a reasonable solution
with a single controller for mid-sized infrastructures, giving
around 5.0s to retrieve flow statistics from 631 hosts each
hosting 20 VMs, as shown in Fig. 7a. For larger infrastructures
(> 1000 hosts), we refer to [27] and suggest using multiple
SDN controllers to collect flows or sampling them by using
sFlow or DevoFlow [28].

The running time of the Sync migration algorithm has also

been evaluated on the controller. The number of VMs within
a communicating group, as an important input parameter in
the algorithms, is scaled from 100 to 1000 VMs. The times
consumed for GetNextCommunicatingVMsGroup() in Algo-
rithm 1, Phase I for policy migration in Algorithm 2, and Phase
II for VM migration in Algorithm 3 are shown in Fig. 7b.
As shown in the figure, GetNextCommunicatingVMsGroup()
is very efficient and can be completed within 0.06s even with
1000 communicating VMs. The running time of Phase I for
policy migration is similar to Phase II when the number of
communicating VMs is small. However, Phase I outperforms
Phase II after the number of VMs increased above 500. With
1000 VMs, Phase I takes 1.5s, while Phase II takes 2.4s, and
the total running time for Sync is around 4.0s. Combining the
collection of flow statistic (5s) and Sync migration algorithms
(4s), our control loop takes only around 9s to initiate VM and
policy migration operations on a fat-tree DC topology with
k = 14 (i.e., 931 nodes, including 686 hosts and 245 switches).

V. RELATED WORK

Recent developments in SDN enable more flexible
MB deployment over the network while still ensuring
that specific subsets of traffic traverse the desired set of
MBs [8][10][12][13]. Zafar et al. [8] proposed SIMPLE, a
SDN-based policy enforcement scheme to steer DC traffic in
accordance to policy requirements. Similarly, Fayazbakhsh et
al. presented FlowTags [13] to leverage SDN’s global network
visibility and guarantee correctness of policy enforcement.
However, these proposals are not fully designed with VMs
migration in consideration, and may put migrated VMs on the
risk of policy violation and performance degradation.

Multi-tenant Cloud DC environments require more dy-
namic application deployment and management as demands
ebb and flow over time. As a result, there is considerable
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literature on VM placement, consolidation and migration for
server, network, and power resource optimization [15][29].
However, none of these research efforts consider network
policy in their design.

A similar work to ours is Policy-Aware Application Cloud
Embedding (PACE) [6] which is a framework to support
application-wide and in-network policies VM placement. How-
ever, PACE only considers one-off VM placement, and hence
fails to deal with and further improve resource utilization in
the face of dynamic workloads. A recent work, PLAN, has
been proposed to provide a joint policy and network-aware
virtual machine migration scheme [30][16], but it does not
migrate network policies, limiting the the scope for substantial
performance improvement.

VI. CONCLUSION

Network policies and virtual machines are at the heart
of DC network design today. In this paper, we have studied
the network communication cost reduction in DC topologies
by jointly considering virtual machine and network policy
dynamic (re)allocation. We first proved that this jointly op-
timization problem is NP-Hard, and then proposed a Sync
migration scheme to minimize the communication cost by
performing policy and VM migration in two phases. Extensive
results have shown that Sync significantly reduces the total
communication cost in DC by 50% within few seconds and
effectively improve end-to-end delay by 38.8%, while strictly
satisfying requirements of network policies.
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