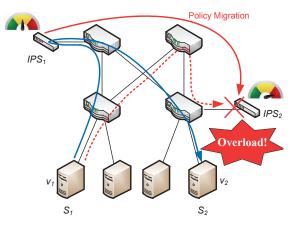
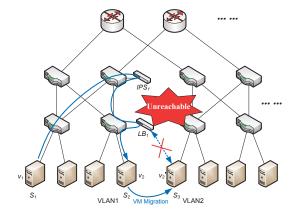
Experimental Evaluation of SDN-Controlled, Joint Consolidation of Policies and Virtual Machines

Wajdi Hajji* **Posco Tso*** Lin Cui† Dimitrios Pezaros‡

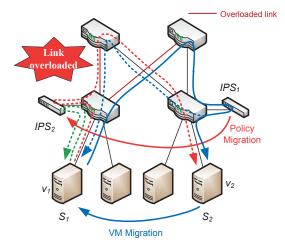
*Loughborough University, UK †Jinan University, China ‡Glasgow University, UK



2 Sync algorithms and system architecture


3 Conclusion

4 Experimental Evaluation


Middlebox challenges

Middlebox challenges

Middlebox challenges

Movitation		
Middlebox ch	allenges	

- ▶ We have proposed Sync: Synergistic Policy and Virtual Machine Consolidation in Cloud Data Centers¹.
- Plain lanuage: Sync migrates virtual machines and network policies at the same time.

¹L. Cui, R. Cziva, F. P. Tso and D. P. Pezaros, "Synergistic policy and virtual machine consolidation in cloud data centers," IEEE INFOCOM 2016, San Francisco, CA, 2016, pp. 1-9. doi: 10.1109/INFOCOM.2016.7524354

Movitation		
Middlebox cl	nallenges	

- ▶ We have proposed Sync: Synergistic Policy and Virtual Machine Consolidation in Cloud Data Centers¹.
- Plain lanuage: Sync migrates virtual machines and network policies at the same time.


Does it scale in a real data centre environment?

¹L. Cui, R. Cziva, F. P. Tso and D. P. Pezaros, "Synergistic policy and virtual machine consolidation in cloud data centers," IEEE INFOCOM 2016, San Francisco, CA, 2016, pp. 1-9. doi: 10.1109/INFOCOM.2016.7524354

2 Sync algorithms and system architecture

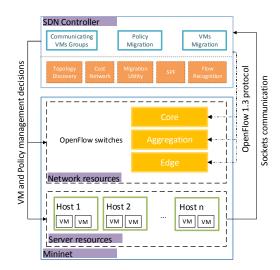
3 Conclusion

	Sync algorithms and system architecture	
How does	Sync work? – Sync algorithms	

Get Communicating VM Groups

The algorithm partitions all VMs into isolated groups in which VMs do not communicate with a VM outside their group. These VM groups will be the input of other algorithms.

Policy Migration


This algorithm focuses on migrating the policies, in other words defining again the MBs; replace them with the same type of MBs as the deployed ones.

VM Migration

The VM migration algorithm, for a given VM group, initialises and obtains the preference list (where no policy violation or overused server capacity) of all servers.

	Sync algorithms and system architecture	
System archi	itecture	

The topology and the controller communicate through OpenFlow to add rules to switches and via out-of-band control channel.

Movitation	Sync algorithms and system architecture	
Source code		

Source code available on GitHub https://github.com/wajdihajji

1 Movitation

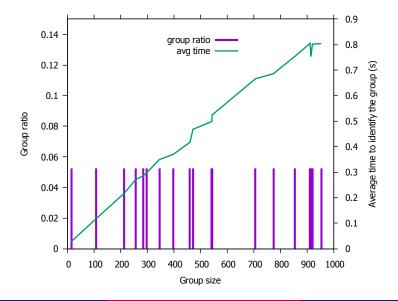
2 Sync algorithms and system architecture

3 Conclusion

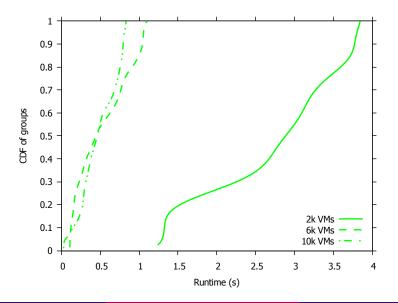
4 Experimental Evaluation

1 Movitation

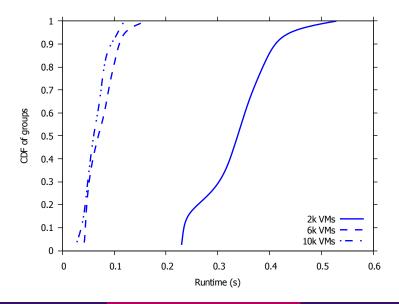
2 Sync algorithms and system architecture


3 Conclusion

Movitation		Experimental Evaluation
Experiment	Environment	


- ▶ We have run our experiments on two identical servers, each has 8 Cores/1.2Ghz CPU and 8GB Memory. Both servers have Ubuntu 14.04 is running atop.
- In server A, we have installed Mininet version 2.3.0d1, OpenFlow 1.35 and Python 2.7.6.
- ▶ In server B, we have installed Ryu controller 4.10.
- ▶ Two servers are connected through a 1Gbps switch.

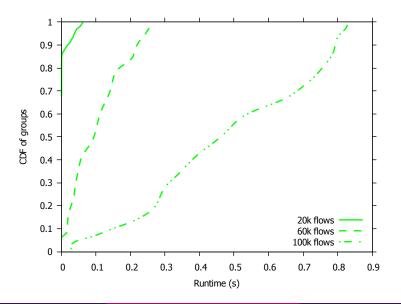
Movitation		Experimental Evaluation
Group Formatio	n	


Posco Tso

Sync runtime with growing number of VMs - VM groups

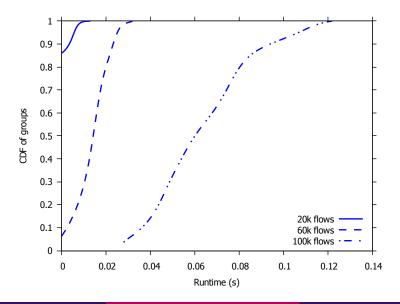

Conclusior

Sync runtime with growing number of VMs - Policy Migration

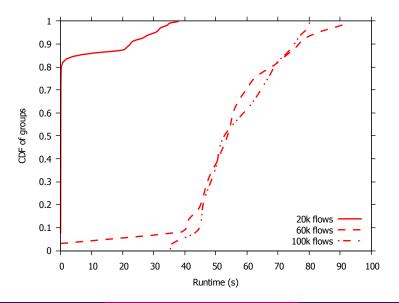


Conclusion

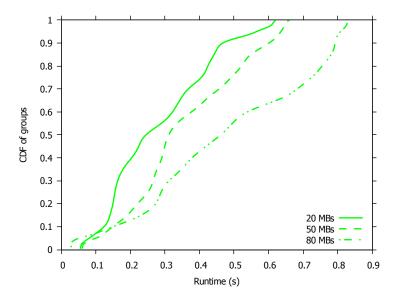
Sync runtime with growing number of VMs - VM Migration



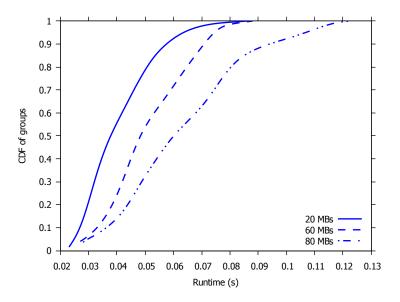
Sync runtime with growing number of flows - VM groups

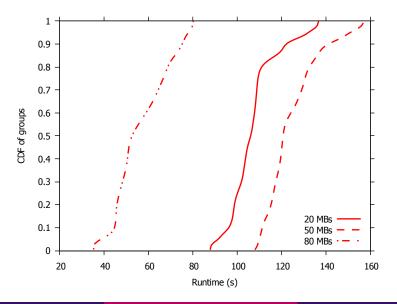

Conclusior

Sync runtime with growing number of flows - Policy Migration



Conclusio


Sync runtime with growing number of flows - VM Migration


Sync runtime with growing number of MBs - VM groups

Sync runtime with growing number of MBs – Policy Migration

Sync runtime with growing number of MBs - VM Migration

		Experimental Evaluation
Conclusions		

- ► The number of VMs has a measurable effect on *Get communicating VM Groups* and *Policy migration* on one hand, and *VM migration* on the other hand.
- ► The three factors have a different impact on the *Sync* algorithms, flows impacts more *Get Communicating VMs* and *Policy Migration* algorithms, while the number of VMs can significantly alter the time needed by *VM migration* algorithm.
- The number of MBs has a known effect on Get communicating VM Groups and Policy migration, whereas, in VM migration, its impact becomes unpredictable because VM migration decision depends more on policy violation prevention strategy.
- ► Because of its fractional use of CPU resources, *Sync* is very resource efficient and has room to scale to much bigger topologies.

Thank you! Questions?