
Joint Virtual Machine and Network Policy
Consolidation in Cloud Data Centers

Lin Cui∗, Fung Po Tso†
∗Department of Computer Science, Jinan University, Guangzhou, China

†School of Computing & Mathematical Science, Liverpool John Moores University, UK
Email: tcuilin@jnu.edu.cn; p.tso@ljmu.ac.uk;

Abstract—Correct implementation of network policies pro-
vides secure and high performance network environment for
multi-tenant Cloud Data Center (DC), but at the same time,
requires substantial effort for manual configuration. While it is
reported that 78% of DC downtime is caused by misconfigu-
ration [1], the dynamic policy configuration and user demands
on server consolidation have amplified the challenge of correct
implementation. In this paper, we propose joint virtual machine
and network policy migrations - Two-way migration - to facilitate
the simultaneous need of dynamic server consolidation and
policy management. Extensive simulation analysis shows that the
proposed Two-way migration can mitigate link utilization at the
core and aggregation layers by 90% and 28% respectively while
adhering strictly to the network policies.

I. INTRODUCTION

As cloud computing has seen proliferated adoption in
recently years, data centres (DCs), the underpinning infras-
tructures, are challenged with increased complexity of net-
work management. Research literature has demonstrated that
deploying applications in cloud DCs without considering in-
network policies can lead to up to 91% policy violations [2]. In
order to implement desired network policies, network operators
typically deploy a diverse range of “middleboxes” (MBs), such
as firewalls, load balancers, Intrusion Detection and Prevention
Systems (IDS/IPS), and application enhancement boxes, the
number of which is on par with the number of routers in a
network [3][4].

Network policies demand traffic to traverse a sequence
of specified MBs. Consequently, emerging evidence demon-
strating that up to 78% of DC downtime is attributed to
misconfiguration of network policies and paths [1][3]. We
argue that this challenge is amplified by the dynamism of
traffic relocation as a result of dynamic virtual machine (VM)
migration in today’s virtualized DC. Existing research treat
dynamic VM and network policy consolidation as disjoint
research problems [1][5][6]. Fig. 1 shows an example that
traffic between two VMs need to be checked by an IPS. If
we only consider VM migration, the second VM might be
migrated to s1 or s2, or if only policy migration considered, the
traffic can be watched by another IPS. In either case, there is
actually no help on reducing bandwidth cost, while increasing
the risk of policy violation due to the longer path.

In this paper, we study both the policy migration and
VM migration problem. We show that joint optimization of
dynamic VM and policy migration can archive significant
network-cost savings whilst still satisfying network policy
requirements. Based on building the cost network among MBs

IPS1

IPS2

S1 S4S2 S3

Fig. 1: Migrate policy or VMs separately make no improve-
ment on efficiency. Solid blue: original flow; dash green: only
migrate policy flow; dot dash red: only migrate VM

.

and applying the stable matching theory in the allocation of
VMs, we proposed a simple and efficient Two-way migration
scheme, which enables consolidation of both policies and
VMs, while reducing the total communication cost of whole
DC. To the best of our knowledge, this is the first study on joint
policy and VM migration optimization in DC environments.

The remainder of this paper is organised as follows. Sec-
tion II describes the model of joint policy and VM consolida-
tion (PVC), and defines the communication cost and utility for
both VM and policy migration. An efficient Two-way migration
algorithm is proposed in Section III. Section IV evaluates the
performance of the proposed scheme and Section VI concludes
the paper.

II. PROBLEM MODELING

A. Overview

We consider a multi-tier DC network which is typically
structured under a multi-root tree topology such as canoni-
cal [7] or folded clos network [8][9].

Let V = {v1, v2, . . .} be the set of VMs in the DC network
hosted by the set of servers S = {s1, s2, . . .}. The vector
ri denotes the physical resource requirements of VM vi. For
instance, ri could have three components that capture three



types of physical hardware resources such as CPU cycles,
memory size, and I/O operations 1. Accordingly, the available
amount of physical resource of host server sj is given by a
vector hj . Hence we use

∑
vk∈A(sj)

rk + ri � hj to denote
that sj has sufficient physical resource to accommodate VM
vi, where

∑
vk∈A(sj)

rk is the total requirements of all VMs
hosted by sj currently.

Let M = {m1,m2, . . .} be the set of all MBs
in DC. Each MB mi has several important properties
{type, state, capacity}. The property mi.type defines the
function of mi, e.g., IPS (Intrusion Prevention System), RE
(Redundancy Elimination), FW (Firewall). MBs are usually
stateful and need to process both directions of a session for
correctness. mi.state is used to store the internal state and
processing logic for mi. The mi.capacity is essentially the
throughput of mi.

There are various deployment points for MBs in DC
networks. They can be on the networking path or off the
physical network [1][12]. We consider the MBs are attached
to switches for improved flexibility and scalability of policy
deployment [1]. These MBs may belong to different appli-
cations, deployed and configured by a MB Controller, as
shown in Fig. 1. The centralized MB Controller monitors
the liveness of MBs and informs the switches regarding the
addition or failure/removal of a MB. As the topology of MBs
is relatively static after deployment, so that edge switches
can easily retrieve the global information of MBs from the
controller. Network administrators can specify and update
policies, and reliably disseminate them to the corresponding
switches through the MB Controller.

Traffic in DC is largely flow-based [8]. In light of this,
we define DC traffic as F = {f1, f2, . . .}. For each flow
fi ∈ F, the properties fi.src and fi.dst specify the source
and destination VMs of fi respectively, e.g., fi.src = v1 and
fi.dst = v2. The data rate of fi.rate is represented by data
exchanged from VM fi.src to VM fi.dst per time unit2

In reality, one policy can be applied to multiple flows
and vice versa. However, for ease of discussion, we assume
that flows and policies are one to one correspondence. The
set of policies is P. For each fi ∈ F, there is a policy pi.
The pi.seq defines the sequence of MB types that all flows
matching policy pi should traverse in order, e.g., pi.seq =
{FW, IPS, Proxy}. The pi.len denotes the size of the MB
list. list is the list of MBs that are assigned to pi to fulfil its
requirement. Specially, pi = ∅ means fi is not governed by
any policies.

We denote pi.in and pi.out to be the first (ingress) and last
(egress) MBs respectively in pi.list. Let P (vi, vj) be the set
of all policies defined for traffic from vi to vj , i.e., P (vi, vj) =
{pk|pk 6= ∅, fk.src = vi, fk.dst = vj ,∀pk ∈ P}.

1In this paper, we assume that the size of a slice is a multiple of an atomic
VM. For example, if the atomic VM has one 1 GHz CPU core, 512 MB
memory and 10 GB storage, then a VM of size 2 means it effectively has a
2 GHz CPU core, 1 GB memory and 20 GB hard disk storage. Such atomic
sizing is common among large-scale public clouds to reduce the overhead of
managing hundreds of thousands of VMs and is widely adopted in research
literature [10], [11] to reduce the dimensionality of the problem.

2There are a handful of research literature, e.g., [13][14], about deriving
real time traffic matrices in DC networks.

Policy pi is satisfied, if and only if all required MBs are
allocated to pi with the correct types and order:

m.type ==pi.seq[j],

∀ m = pi.list[j], j = 1, . . . , pi.len
(1)

where pi.seq[j] is the jth type of MB that need to be traversed
in pi.seq.

B. Communication Cost with Policies

We denote L(ni, nj) as the routing path between nodes
(e.g., VMs, MBs or switches) ni and nj . l ∈ L(ni, nj) if link
l is on the path. For a flow fi, where pi 6= ∅, its actual routing
path is:

Li(fi.src, fi.dst) = L(fi.src, pi.in)

+

pi.len−1∑
j=1

L(pi.list[j], pi.list[j + 1])

+ L(pi.out, fi.dst)

(2)

The cost of each link in DC networks varies on the
particular layer that they interconnect. High-speed core router
interfaces are much more expensive (and, hence, oversub-
scribed) than lower-level ToR switches [15]. Therefore, in
order to accommodate a large number of VMs in the DC and
at the same time keep investment cost low from a providers
perspective, utilization of the “lower cost” switch links is
preferable to the “more expensive” router links. Let ci denote
the link weight for li. In order to reflect the increasing cost of
high-density, high-speed (10 Gb/s) switches and links at the
upper layers of the DC tree topologies, and their increased
over-subscription ratio [9], we can assign a representative link
weight ωi for an ith-level link per data unit. Without loss of
generality, in this case ω1 < ω2 < ω3.

Hence, we define the Communication Cost of all traffic
from VM vi to vj as

C(vi, vj) =
∑

pk∈P (vi,vj)

fk.rate
∑

ls∈Lk(vi,vj)

cs

=
∑

pk∈P (vi,vj)

{Ck(vi, pk.in)

+

pk.len−1∑
j=1

Ck(pk.list[j], pk.list[j + 1])

+ Ck(pk.out, vj)}
(3)

where Ck(vi, pk.in) = λk(vi, vj)
∑

ls∈L(vi,pk.in)
cs is the

communication cost between vi and pk.in for flows
which matched pk. Similarly, Ck(pk.out, vj) is the com-
munication cost between pk.out and vj for pk, and
Ck(pk.list[j], pk.list[j + 1]) is the communication cost be-
tween ml and its successor MB in pk.list.

C. Policy and VM Migration Problem

We denote A to be an allocation of both VMs and MBs.
A(vi) is the server which hosts vi, and A(sj) is the set of VMs
hosted by sj . A(pk) is the set of MBs which are allocated to
policy pk, i.e., pk.list. A(ml) refers to all flow policies that
use ml as a node on its path.



The Policy-VM Consolidation (PVC) problem is defined as
follows:

Definition 1. Given the set of VMs V, servers S, policies P
and MBs M, we need to find a allocation A that minimizes
the total communication cost:

min
∑
vi∈V

∑
vj∈V

C(vi, vj)

s.t. A(vi) 6= ∅,∀vi ∈ V∑
vi∈A(sj)

ri ≤ hj ,∀sj ∈ S

pk is satisfied,∀ pk ∈ P∑
pk∈A(mi)

fk.rate ≤ mi.capacity,∀mi ∈M

(4)

PVC can be easily proven to be NP-Hard as it can be
treated as a restricted version of the Generalized Assignment
Problem (GAP) [16]. However, the GAP is APX-hard to
approximate [16]. The existing centralized approximation algo-
rithms are too complex and infeasible to implement over a DC
environment which could include tens of thousands servers.

III. TWO-WAY MIGRATIONS

The PVC problem involves placement of both VMs and
policies. To solve it, we introduce a Two-way migration: VMs
migrations among servers and policy migration among MBs.

A. VMs Migration and Cost

Considering a migration for VM vi from its current allo-
cated server A(vi) to another server ŝ: A(vi)→ ŝ, the feasible
space of candidate servers for vi is characterized by:

S(vi) = {ŝ|(
∑

vk∈A(ŝ)

rk + ri) � hj ,∀ŝ ∈ S \ sj} (5)

Considering that vi is hosted on sj , i.e., A(vi) = sj , let
Ci(sj) be the total communication cost induced by vi between
sj and all ingress & egress MBs associated with vi:

Ci(sj) =
∑

pk∈P (vi,∗)

Ck(vi, pk.in) +
∑

pk∈P (∗,vi)

Ck(vi, pk.out)

(6)

Migrating a VM also generates network traffic between the
source and destination hosts of the migration. The amount of
traffic depends on the memory size of the VM, its page dirty
rate, the available bandwidth for the migration and some other
hypervisor-specific constants [17]. We borrowed the model for
estimating migration cost defined in [18]:

Cm(vi) =M · 1− (R/L)n+1

1− (R/L)
(7)

where n = min(dlogR/L
T ·L
M e, dlogR/L

X·R
M ·(L−R)e) is the

number of pre-copy cycles, M is the memory size of vi, R is
the page dirty rate, and L is the bandwidth used for migration.
X and T are user settings for the minimum required progress
for each pre-copy cycle and the maximum time for the final
stop-copy cycle, respectively [18].

Such migration cost should not outweigh the reduction in
the overall communication cost. We then consider utility as

m3

m4

m3m2

m2

m1

ˆ ˆ

(1) (2)

(a)

m2

m3

m2m1

m1

s1 ˆ ˆ

s1

ˆ

VMs

migration
Policies

migration

(b)

Fig. 2: (a) Multiple MBs migration on a policy path equals to
migrating them one by one: old path m1 → m2 → m3 → m4,
new path m1 → m̂2 → m̂3 → m4. We can first migrate m2

to m̂2, then migrate m3 to m̂3. (b) Decomposable migration
among VMs and MBs

the gain of a migration. Hence, the utility of the migration
A(vi)→ ŝ is defined as:

U(A(vi)→ ŝ) = Ci(A(vi))− Ci(ŝ)− Cm(vi) (8)

Specifically, U(A(vi)→ ŝ) = 0 if no migration takes place.

B. Policy Migration and Cost

To preserve the correctness and fidelity of in-progress flows
for policy migrations, the destination MB must receive the
internal MB state associated with the migrated flows, while the
old MB still keeps the internal state associated with remaining
flows. Clearly, the MB states must be able to be cloned,
shared, moved and merged. To support this, we adopt the
architecture of OpenNF [19], which is a control plane with
carefully designed APIs for managing MBs and policies.

Let (pk, i) → m̂ denote migrating the ith MB of pk, i.e.,
m′ = pk.list[i], to a new MB of m̂. The feasible space of
candidate MBs for m̂ is characterized by:

M(pk, i) = {m̂|m̂.type == m′.type,∑
pj∈A(m̂)

fj .rate ≤ m̂.capacity − fk.rate,

∀m̂ ∈M \m′}

(9)

We assume that the MBs assignment for policy pk is an
atomic operation, i.e., either all required MBs are assigned to
pk or none is assigned. In the following, we suppose pk is
assigned, and consider policy migration on intermediate MBs
(i.e., pk.list[i],∀i = 1, . . . , pk.len − 1) and end MBs (i.e.,
pk.in and pk.out) of pk.list respectively.

1) Migration on Intermediate MBs Associated Policies: If
migration of pk involves two or more attached MBs along the
policy path, we can migrate pk from these MBs one by one.
This can be easily proved to be equal through Fig. 2a. Thus, in
the following analysis, we only need to consider the migration
of pk for one attached MB each time.

Define the utility of migration (pk, i)→ m̂ as the commu-
nication cost reduction gained substract the cost induced by
the policy migration:

U((pk, i)→ m̂) = Ck(pk.list[i− 1],m′) + Ck(m′, pk.list[i+ 1])

− Ck(pk.list[i− 1], m̂)− Ck(m̂, pk.list[i+ 1])

− σik
(10)



2) Migration on End MBs Associated Policies: End MBs
for pk involves the migration of either pk.in (pk.in→ m̂) or
pk.out (pk.out → m̂). The key difference of utility between
migration of end MBs and intermediate MBs associated poli-
cies is that VMs is included for calculating the cost. Hence,
the utility for migration of pk.in→ m̂ is:

U(pk.in→ m̂) = Ck(fk.src, pk.in) + Ck(pk.in, pk.list[2])
− Ck(fk.src, m̂)− Ck(m̂, pk.list[2])
− σik

(11)
The utility for migration of pk.out → m̂ is similar to
Equation (11).

C. Two-way Migration Algorithm

Based on above analysis, we can easily observe that,
for a single flow, the migration of VMs and policies are
all decomposable, which means the migration sequence for
src/dst VMs and each MBs are independent. Without loss of
generality, we use a flow for example in Fig. 2b. We consider
migration on portion of a flow, i.e., migration of source VM
which is hosted by s1, policy migration on the ingress MB m1

and one intermediate MB m2.

According to utility definitions of both VMs and policy
migration in the Equations (8), (11) and (10), we can easily
show that:

U((s1,m1,m2)→ (ŝ1, m̂1, m̂2)) =

U(s1 → ŝ1) + U(m1 → m̂1) + U(m2 → m̂2)
(12)

Equation (12) describes an important property of VMs and
Policy migration: we can treat all MBs and VMs at both
endpoints of the flow independently during the migration.

In the following, we propose a Two-Way Migration scheme
utilizing the property of decomposable. The whole scheme is
comprised of two phases - to perform migration on policies and
VMs respectively in order to reduce the total communication
cost.

1) Phase I: Policy Migration: We have shown that migra-
tion of policies amongst MBs for a single flow is decompos-
able. Nevertheless, a VM usually has multiple active flows at
a time. Therefore, in Phase I, we only migrate policies, while
preparing for the migrations of VMs by building the preference
matrix of servers on VMs.

For a flow fi which needs to traverse n = pi.len MBs, we
define its Cost Network, which is a (n+2)-tier directed graph.
Flow originates from the source (fi.src) and terminate at the
sink (fi.dst). The first (or the last) tier is all possible servers
that can accept fi.src (or fi.dst) for VM migration defined
in Equation (5), as well as its current host server. The middle
n tiers are all possible MBs defined in Equation 9. Fig. 3
shows an example of a flow needing to traverse {IPS,RE}.
The weight of each edge is initialized as the corresponding
cost for migration. Specially, the weight of edges connected to
source/sink are the migration cost of source/destination VMs.

Clearly, the route with largest utility for a flow through
migration is the shortest path from source to sink. Thus, we
proposed the Policy Migration Algorithm, shown in Algorithm
1, to minimizing the total communication cost through the

sk

smsj

si

RE2

RE1

Source

(v0)
Sink

(v1)

0

IPS2

IPS1

0

Cm(v1)

..
.

..
.

Cm(v0)

C(si,IPS1) C(IPS1,RE1) C(RE1,sk)

C(sj,IPS1)+σ1i C(IPS2,RE2)+σ2i
C(RE2,sm)

C(sj,IPS1)

C(si,IPS2)+σ1i

C(IPS1,RE1)

C(IPS1,RE2)+σ2i

C(RE2,sk)

C(RE1,sm)

m1 m2

Fig. 3: Example: Suppose the current path for flow fi path is
si → IPS1 → RE1 → sk.

Algorithm 1 Phase I: Policy Migration

Input: V,S,F,P,M
Output: New allocation of MBs for all policies

1: Sort F by rate in ascending order
2: for each f ∈ F do
3: p =the policy applied on f
4: Construct the cost network N
5: (ssrc, sdst,mlist) = SPF(N)
6: for i = 1 to mlist.len do
7: if p.list[i] 6= mlist[i] then
8: Perform Policy migration: p.list[i]→ mlist[i]
9: end if

10: end for
11: Update routing for policies
12: ρ(ssrc, f.src) += 1 . Update preference matrix
13: ρ(sdst, f.dst) += 1
14: end for

migration of policies. The function call (ssrc, sdst,mlist) =
SPF(N) returns the shortest path for f , where ssrc is the
source server, sdst is the destination server and mlist is the
list of MBs, e.g., (s1, s2, {m1, . . . ,m2}).

A S × V preference matrix ρ is maintained to help future
VM migration. ρ(s, v) is the scores of VM v, which is given by
server s. ρ(s, v) is initialized to be zero, and will be increased
by one each times if a flow f , to/from v, chooses s for its
shortest path in Algorithm 1.

2) Phase II: VM Migration: According to Equation (8),
migrating vi to different server will yield different utility,
which means vi has preference over servers for migration. In
the mean time, during policy migration, each server also has
presented their preference to all VMs through the preference
matrix ρ(s, v). Those preferences can be presented in a ranked
order list. For example, denote li = {v1, v2, . . .} to be the
preference list of si over all possible VMs, and v2 ≺li v1
means si prefer v1 to v2. Moreover, VMs also has a resource
requirement when it is assigned to a server whose availability
of resources is limited. These preference might be inconsistent,
making it difficult to determine migration destination of each
VMs.

To overcome this, we model the VMs migration problem
above to be a typical many-to-one stable matching, hence
Stable Marriage[20]. We then apply our modified Gale-Shapley
algorithm[20] to address the conflict of preferences and ef-
ficiently match VMs to servers. The key concept of stable
matching is the stability. Before explain the stability, we will



Algorithm 2 Phase II: VM Migration

Input: V,S, ρ
Output: New allocation of servers-VMs Â

1: Obtain preference list li according to ρ, ∀si ∈ S
2: Initialize blacklist bj = ∅, ∀vj ∈ V
3: Â = ∅
4: while ∃vi, and Â(vi) = ∅ do
5: sj ← argmaxs∈S\bi U(A(vi)→ s)

6: Â(vi) = sj
7: if

∑
vk∈Â(sj)

rk � hj then
8: repeat
9: vk ← last VM in Â(sj) according to lj

10: Â(vk) = ∅ . sj rejects vk
11: best rejected← vk
12: until

∑
vk∈Â(sj)

rk � hj
13: for each vk ∈ lj , vk ≺lj best rejected do
14: bk = bk ∪ sj . Add sj to the blacklist of vk
15: end for
16: end if
17: end while
18: Perform VMs migration: A→ Â
19: Update routing for VMs

first define the blocking pair.

Definition 2. For an allocation A, a VM-server pair (vi, sj)
is a blocking pair if A(vi) 6= sj , U(A(vi) → sj) > 0, and
any of the two conditions holds 3

∀vk ∈ A(sj) and vi ≺lj v
′,
∑

rk + ri ≺ hj (13)

where lj is the preference list of sj over all VMs, vi ≺lj v
′

means vi is prioritize over v′ according the list li.

A stable matching means no blocking pair exists in the final
matching of VMs and servers. An unstable matching between
VMs and servers will always leave rooms to minimizing
the total communication cost, while a stable matching is the
optimal assignment for both VMs and servers.

The Phase II algorithm for VM migration is shown in
Algorithm 2. Initially, all VMs are unmatched. For such a
VM, say vi, Â(vi) = ∅. vi will be first matched to the
server which has not yet rejected vi and can gain the largest
utility (line 5∼6), say server sj . If sj has sufficient capacity,
it accepts vi. Otherwise, it sequentially rejects less preferable
VMs, which are allocated to sj previously. Whenever sj rejects
a VM, it updates the best rejected variable, and at the end all
VMs ranked lower than best rejected are removed from its
preference.

We can prove that Algorithm 2 can always output a stable
matching.

Theorem 1. The Algorithm 2 can always output a stable
matching in O(VS), where V and S are the number of input
VMs and servers.

3Considering the complexity and existence of a stable matching, we only
consider one type of blocking pair. For more information about the blocking
pair and stability, please refer to [10]

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

End−to−end communication cost

C
D

F
 o

f c
os

t p
er

 fl
ow

 (
%

)

 

 

Before Two−way Migration
After Two−way Migration

(a) Cost of flows

2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

End−to−end route length

C
D

F
 o

f r
ou

te
 le

ng
th

 (
%

)

 

 

Before Two−way Migration
After Two−way Migration

(b) Route length of flows

Fig. 4: Performance of Two-way migration

Proof: We can prove the stability of the output matching
by contradiction. Suppose that the Algorithm 2 produces a
matching Â with a blocking pair (vi, sj), i.e., there is at least
one VM v′ ∈ Â(sj) worse than vi to sj . vi must have proposed
to sj and been rejected by sj . v′ should either be rejected by sj
before, or add sj to its blacklist when vi is rejected (in line 14).
Thus, v′ 6∈ Â(sj), which is contradicts with the assumption.

In the worst case, each VM is rejected by every server.
So, Algorithm 2 will always be terminated and output a stable
matching within O(VS).

IV. EVALUATION

We have evaluated the performance of the two-way migra-
tion through extensive simulations in a fat-tree DC topology
with k = 14 (i.e., 686 servers and 245 switches). In the
simulation, VMs are modeled as a collection of socket appli-
cations communicating with one or more other VMs in the DC
network. In all experiments, we have set 10% of flows to be
policy-free, meaning that they are not governed by any existing
network policies. For the other 90% of flows, they have to
traverse a sequence of MBs specified by policies before being
forwarded to their destination. Each policy-constrained flow
is configured to traverse 1∼3 MBs, including firewall, IPS,
RE or LB. A centralized controller is implemented to collect
all network information and perform the two-way migration
algorithm.

Fig. 4 shows the evaluation results of two-way migration.
Fig. 4a demonstrates that, throughout the simulation, the two-
way migration method successfully reduces total communica-
tion cost by 63.64%. In addition, by combining migration of
both VMs and policies, the average route length can also be
significantly reduced by as much 40%, as exhibited in Fig. 4b.

Fig. 5 shows the performance comparison between two-
way migration and S-CORE [5] which is distributed commu-
nication cost reduction but policy-agonistic scheme. Obviously,
Fig. 5b illustrates that policy-agonistic S-CORE can only
marginally reduce communication cost. More interestingly, we
can see from Fig. 5b that the VM migration cost of two-way
is only slightly higher than that of S-CORE, but the utility
received by two-way is 20 times better than S-CORE. Fig. 5c
and Fig. 5d demonstrate that two-migraiton can mitigate link
utilization at the core and aggregation layers by 90% and 28%,
respectively, compared to that of 6% and 5.2% for S-CORE.



0 100 200 300 400 500 600 700
0

2

4

6

8

10

12

14

16

18
x 10

6

Number of Servers

T
ot

al
 C

om
m

un
ic

at
io

n 
C

os
t

 

 

Before
Two−way Migration
S−CORE

(a) Total communication cost

16 54 128 250 432 686
10

0

10
2

10
4

10
6

10
8

Number of Servers

C
os

t

 

 

VM Migration Cost (TwoWay)
Policy Migration Cost (TwoWay)
VM Migration Cost (S−CORE)
Utility (TwoWay)
Utility (S−CORE)

(b) VM and policy migration cost

0 100 200 300 400 500 600 700
12

14

16

18

20

22

24

26

Number of Servers

E
dg

e−
A

gg
r 

Li
nk

 U
til

iz
at

io
n 

(%
)

 

 

Before
Two−way Migration
S−CORE

(c) Edge-Aggr link utilization

0 100 200 300 400 500 600 700
0

5

10

15

20

25

30

35

Number of Servers

A
gg

r−
C

or
e 

Li
nk

 U
til

iz
at

io
n 

(%
)

 

 

Before
Two−way Migration
S−CORE

(d) Aggr-Core link utilization

Fig. 5: Comparision of Two-way migration and S-CORE

V. RELATED WORK

Recent researches on network policy focus on leveraging
SDN to enable more flexible middlebox management over
the network while ensuring traversal requirement. Zafar et
al. [21] proposed SIMPLE, a SDN-based policy enforcement
scheme to steer DC traffic in accordance to policy require-
ments. Fayazbakhsh et al. [22] proposed FlogTags to guar-
antee correctness of policy enforcement. Gember et al. [19]
proposed OpenNF, which is a control plane with carefully
designed APIs for managing MBs and policies, e.g., cloning,
sharing, moving and merging MB states. However, current
approaches on policy and middleboxes management ignore
elastic resource provisioning through server virtualization.

Cloud DC environments require more dynamic application
management, and considerable works have been proposed on
VM placement, consolidation and migration for server and
network resource optimization [5][2]. In this paper, we have
demonstrated in that schemes such as S-CORE [5] perform
poorly due to ignoring network policies. The framework PACE
(Policy-Aware Application Cloud Embedding) [2] can sup-
port application-wide, in-network policies, and other realistic
requirements such as bandwidth and reliability. However, it
only considers one-off VM placement and fails to deal with
dynamic workloads, which is common in Cloud DC.

VI. CONCLUSION

Network policies and virtual machines are the basics of DC
technologies today. In this paper, we study the cost reduction
in DC by jointly considering both virtual machine and network
policy migrations. We first prove that the optimization problem
is NP-Hard, and then proposed a Two-way migration scheme
to minimize the cost by performing policy migration and VM
migration in two phases. Extensive simulation results show
that the two-way migration can significantly reduce the total

cost and link utilization at the higher layers of the network
architecture.

REFERENCES

[1] D. A. Joseph, A. Tavakoli, and I. Stoica, “A policy-aware switching
layer for data centers,” in ACM SIGCOMM Computer Communication
Review, vol. 38, no. 4. ACM, 2008, pp. 51–62.

[2] L. E. Li, V. Liaghat, H. Zhao, M. Hajiaghayi, D. Li, G. Wilfong, Y. R.
Yang, and C. Guo, “PACE: Policy-aware application cloud embedding,”
in Proceedings of 32nd IEEE INFOCOM, 2013.

[3] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and
V. Sekar, “Making middleboxes someone else’s problem: Network pro-
cessing as a cloud service,” ACM SIGCOMM Computer Communication
Review, vol. 42, no. 4, pp. 13–24, 2012.

[4] Z. Liu, X. Wang, W. Pan, B. Yang, X. Hu, and J. Li, “Towards efficient
load distribution in big data cloud,” in IEEE ICNC, 2015, pp. 117–122.

[5] F. P. Tso, K. Oikonomou, E. Kavvadia, and D. Pezaros, “Scalable traffic-
aware virtual machine management for cloud data centers,” in IEEE
ICDCS, 2014.

[6] Y. Zhao, Y. Huang, K. Chen, M. Yu, S. Wang, and D. Li, “Joint vm
placement and topology optimization for traffic scalability in dynamic
datacenter networks,” Computer Networks, vol. 80, pp. 109–123, 2015.

[7] Cisco, “Data center: Load balancing data center services,” 2004.
[8] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,

D. A. Maltz, P. Patel, and S. Sengupta, “VL2: a scalable and flexible
data center network,” in ACM SIGCOMM computer communication
review, vol. 39, no. 4. ACM, 2009, pp. 51–62.

[9] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data
center network architecture,” in ACM SIGCOMM Computer Communi-
cation Review, vol. 38, no. 4. ACM, 2008, pp. 63–74.

[10] H. Xu and B. Li, “Anchor: A versatile and efficient framework for
resource management in the cloud,” Parallel and Distributed Systems,
IEEE Transactions on, vol. 24, no. 6, pp. 1066–1076, 2013.

[11] M. Korupolu, A. Singh, and B. Bamba, “Coupled placement in modern
data centers,” in IEEE International Symposium on Parallel & Dis-
tributed Processing (IPDPS). IEEE, 2009, pp. 1–12.

[12] L. E. Li, M. F. Nowlan, Y. R. Yang, and M. Zhang, “Mosaic: policy
homomorphic network extension,” in Proceedings of the 4th Interna-
tional Workshop on Large Scale Distributed Systems and Middleware.
ACM, 2010, pp. 38–43.

[13] Z. Hu, Y. Qiao, and J. Luo, “Coarse-grained traffic matrix estimation
for data center networks,” Computer Communications, 2014.

[14] Y. Qiao, Z. Hu, and J. Luo, “Efficient traffic matrix estimation for data
center networks,” in IEEE IFIP Networking Conference, 2013, pp. 1–9.

[15] A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel, “The cost of a
cloud: research problems in data center networks,” ACM SIGCOMM
computer communication review, vol. 39, no. 1, pp. 68–73, 2008.

[16] “Generalized assignment problem.” [Online]. Available:
http://en.wikipedia.org/wiki/Generalized assignment problem

[17] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt,
and A. Warfield, “Live migration of virtual machines,” in Proceedings
of the 2nd conference on Symposium on Networked Systems Design &
Implementation-Volume 2. USENIX Association, 2005, pp. 273–286.

[18] V. Mann, A. Gupta, P. Dutta, A. Vishnoi, P. Bhattacharya, R. Poddar,
and A. Iyer, “Remedy: Network-aware steady state vm management for
data centers,” in NETWORKING 2012. Springer, 2012, pp. 190–204.

[19] A. Gember-Jacobson, C. P. Raajay Viswanathan, R. Grandl, J. Khalid,
S. Das, and A. Akella, “Opennf: enabling innovation in network
function control,” in Proceedings of the 2014 ACM conference on
SIGCOMM. ACM, 2014, pp. 163–174.

[20] D. Gale and L. S. Shapley, “College admissions and the stability of
marriage,” American mathematical monthly, pp. 9–15, 1962.

[21] Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu, “Simple-
fying middlebox policy enforcement using sdn,” ACM SIGCOMM
Computer Communication Review, vol. 43, no. 4, pp. 27–38, 2013.

[22] S. K. Fayazbakhsh, V. Sekar, M. Yu, and J. C. Mogul, “Flowtags:
enforcing network-wide policies in the presence of dynamic middlebox
actions,” in ACM SIGCOMM HotSDN. ACM, 2013, pp. 19–24.


