
Loughborough University
Institutional Repository

Enabling heterogeneous
network function chaining

This item was submitted to Loughborough University's Institutional Repository
by the/an author.

Citation: CUI, L. ... et al, 2018. Enabling heterogeneous network function
chaining. IEEE Transactions on Parallel and Distributed Systems, doi:10.1109/TPDS.2018.2871845.

Additional Information:

• c© 2018 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promo-
tional purposes, creating new collective works, for resale or redistribution
to servers or lists, or reuse of any copyrighted component of this work in
other works.

Metadata Record: https://dspace.lboro.ac.uk/2134/35131

Version: Accepted for publication

Publisher: c© IEEE

Please cite the published version.

https://dspace.lboro.ac.uk/2134/35131

1

Enabling Heterogeneous Network
Function Chaining

Lin Cui, Member, IEEE, Fung Po Tso, Member, IEEE, Song Guo, Senior Member, IEEE ,
Weijia Jia, Senior Member, IEEE , Kaimin Wei, Member, IEEE , and Wei Zhao, Fellow, IEEE

Abstract—Today’s data center operators deploy network policies in both physical (e.g., middleboxes, switches) and virtualized (e.g.,
virtual machines on general purpose servers) network function boxes (NFBs), which reside in different points of the network, to exploit
their efficiency and agility respectively. Nevertheless, such heterogeneity has resulted in a great number of independent network nodes
that can dynamically generate and implement inconsistent and conflicting network policies, making correct policy implementation a
difficult problem to solve. Since these nodes have varying capabilities, services running atop are also faced with profound performance
unpredictability. In this paper, we propose a Heterogeneous netwOrk Policy Enforcement (HOPE) scheme to overcome these
challenges. HOPE guarantees that network functions (NFs) that implement a policy chain are optimally placed onto heterogeneous
NFBs such that the network cost of the policy is minimized. We first experimentally demonstrate that the processing capacity of NFBs
is the dominant performance factor. This observation is then used to formulate the Heterogeneous Network Policy Placement problem,
which is shown to be NP-Hard. To solve the problem efficiently, an online algorithm is proposed. Our experimental results demonstrate
that HOPE achieves the same optimality as Branch-and-bound optimization but is 3 orders of magnitude more efficient.

Index Terms—Network policy, Service chain, Middleboxes, Network functions, Heterogeneous, Datacenters.

F

1 INTRODUCTION

As cloud computing sees widespread adoption, data
centers (DCs), the underpinning infrastructures of cloud,
deploy a great variety of network functions (NFs) such
as firewall (FWs), intrusion prevention/detection system
(IPS/IDS), deep packet inspection (DPI), load balancer (LB),
network address translation (NAT), etc., in the network to
safeguard networks and improve application performance
[1] [2]. In practice, various permutations of these NFs form
an ordered composition (or chain) – as defined by a network
policy [3] [4] – that must be applied to packets in uni-
directional or bi-directional manner. This process is also
known as network service chaining [5] [6]. Hence, network
policy enforcement implies correct and efficient chaining of
NFs. The chain of NFs will then be placed onto different
Network Function Boxes (NFBs), e.g., middleboxes (MBs),
programmable switches and NFV servers [7].

The rise of Software Defined Networking (SDN) and

• Lin Cui is with Department of Computer Science, Jinan University,
Guangzhou, China.
E-mail: tcuilin@jnu.edu.cn.

• Fung Po Tso is with Department of Computer Science, Loughborough
University, LE11 3TU, UK.
E-mail: p.tso@lboro.ac.uk.

• Song Guo is with Department of Computing, The Hong Kong Polytechnic
University, Hung Hom, Kowloon, Hong Kong.
E-mail: song.guo@polyu.edu.hk.

• Weijia Jia is with Department of Computer and Information Science,
University of Macau, Macau SAR, China.
E-mail: jiawj@umac.mo.

• Kaiming Wei is with Department of Computer Science, Jinan University,
Guangzhou, China.
E-mail: cswei@jnu.edu.cn.

• Wei Zhao is with American University of Sharjah, PO Box 26666,
Sharjah, U.A.E.
E-mail: zhao8686@gmail.com.
Corresponding author: Fung Po Tso

Network Function Virtualization (NFV) has enabled three
dimensions of heterogeneity among NFBs: (1) network loca-
tion – there are in-network NFBs such as middleboxes, SDN
switches and edge NFBs such as commodity NFV servers;
(2) processing capacity – hardware NFBs are generally more
efficient than virtualized NFBs; and (3) supported NF types
– each hardware middlebox usually can only support one
specific type of NF whereas an SDN switch can implement
a few simple NFs, e.g., stateless FW and LB built on top of
OpenFlow [8]. NFV servers, albeit less efficient, can run any
type of NFs.

Clearly, the heterogeneity is a double edge sword. On
one hand, it provides a vast combination of different NFBs
– an opportunity for more innovative and sophisticated net-
work policy implementation. On the other hand, it presents
great challenges in correct and efficient chaining of NFs:

(1) Existing body of work for deployment of network
policies mainly support policy enforcement on either legacy
middleboxes or virtualized servers with NFV and SDN
paradigms [3] [9] [10] [11];

(2) The performance of NFs is subject to the computing
capability of commodity servers. Also, bottlenecked NFs can
throttle the performance of other NFs in the chain. This will
lead to unpredictability in application performance such as
end-to-end latency [12].

To better visualize the challenges and opportunities,
Fig. 1 depicts three example scenarios where heterogeneous
NFBs are used. Assume the traffic from s1 to s2 is subject
to the policy containing LB and/or IPS. (1) Violation - MB
capacity overloaded: As shown in Fig. 1a, while the hardware
middlebox NFB1 is overloaded, rejecting incoming packets,
we can place the rules to an NFV server NFB2, which
has enough capacity. Moreover, simple load balancer can
also be implemented on an OpenFlow switch, e.g., NFB3.

2

S1 S2

NFB1

LB NF instance

Original path

Re-scheduled path

LB

Overload!NFV server

OpenFlow switch

Physical middlebox

NFBs:

LB

LB

NFB2

NFB3

(a) Scenario 1: NFB capacity overloaded

… …

NFB1

S1

VLAN1 VLAN2

Unreachable … …

S2

NFB3

NFB2

LB

LB

IPS

(b) Scenario 2: Route unreachable

S1 S2

Longer

path

LB

LB

NFB2

NFB1

(c) Scenario 3: Suboptimal perfor-
mance

Fig. 1: Examples scenarios in heterogeneous environment

This example also reflects the use of all three dimensions of
heterogeneity to remedy potentially infeasible policy imple-
mentation. (2) Violation - route unreachable: Physical NFBs
and virtualized NFBs are usually managed by different
controllers, which may be misconfigured. As demonstrated
in Fig. 1b, the traffic from s1 to s2 must be checked by IPS
and LB. IPS is on a hardware middlebox NFB1 that is
behind VLAN1, while LB is on an NFV server NFB2 behind
VLAN2. Thus, packets would fail to be sent from IPS to LB
if the policy requirement is enforced. However, by placing
the load balancer on an OpenFlow switch (NFB3) to exploit
the network location heterogeneity, the policy can be success-
fully enforced. (3) No violation - suboptimal performance: As
shown in Fig. 1c, placing LB in hardware middlebox or
NFV server, i.e., NFB1, would result in longer paths than
placingLB on on an OpenFlow switch NFB2. Hence, both of
the network location and supported NF type heterogeneity should
be used to ensure that the overall path is minimized.

In this paper, we study a novel network policy enforce-
ment scheme, in terms of network function chaining, in
heterogeneous NFBs environment. We first experimentally
demonstrate that processing capacity of NFBs is the dom-
inant performance factor. We then analytically show that
some particular types of NFs can be re-ordered without
compromising the correctness of the chain. Combining these
two observations with the heterogeneity of NFBs, we formu-
late the Heterogeneous Network Policy Placement problem
with an objective of minimizing network cost.

We then propose an online Heterogeneous netwOrk
Policy Enforcement (HOPE) scheme that can always find an
optimal service chain path for each policy. We favor online
algorithms because today’s policy generation and deploy-
ment are more dynamic due to proliferated adoption of SDN
paradigm. Our experimental evaluation demonstrates that
HOPE can achieve the same optimality as Branch-and-bound
optimization but has three orders of magnitude smaller
runtime.

In short, the contributions of this paper are three-fold:

1) The formulation of the Heterogeneous network pol-
icy enforcement (HOPE) problem which explores the

performance heterogeneity for running same network
functions on different NFBs.

2) Design of an efficient optimal online scheme to solve
the HOPE problem. In addition, an greedy approach
is also provided when efficiency is needed to trade-off
optimality

3) Implementation and extensive evaluation of HOPE on
a real testbed. The results demonstrate that HOPE is
effective and practical.

The remainder of this paper is structured as follows.
Section 2 presents our simple experiments on revealing
performance heterogeneity across the same NF on different
implementation of NFBs with various capacity. Section 3
describes the problem formulation with re-ordering of ser-
vice chain. Efficient schemes for HOPE are proposed in
Section 4, followed by testbed implementation and perfor-
mance evaluation of HOPE in Section 5 and 6 respectively.
Section 7 outlines related works. Finally, Section 9 concludes
the paper and discusses future works.

2 NFBS PERFORMANCE HETEROGENEITY

To understand the extent to which the existence of perfor-
mance heterogeneity among different NFBs configurations,
we have carried out a set of simple test-bed experiments
using several commodity servers and one Pronto 3295 SDN
switch. Each commodity server has an Intel’s Xeon E5-1604
4 cores CPU, 16GB RAM and a dual port 1 Gbps NIC, and
Ubuntu 14.04 operating system. One server has been used
as a virtualized NFB, with KVM as the hypervisor. Another
two servers have been used as client and server respectively,
running software tools, e.g., iPerf [13]. We have also used
a Pronto 3295 SDN switch to emulate a hardware NFB
and used two popular open-sourced softwares – Firewall
(pfSense v2.3.1 [14]) and IDS/IPS (Snort v2.9.8 [15]) – as our
NFs.

2.1 Virtualization Impact on Performance
We first show how virtualization impact on the performance
of NFBs. Virtualization usually introduces significant net-
work delay due to the long queuing at the drivers domains

3

Virtual FW
Hardware FW

Fig. 2: Virtualization impact on firewall (FW)

of the virtualized machines [16]. In this experiment, we have
compared network performance on transaction processing
at virtual Firewall (FW) deployed in a VM and another sim-
ilar FW instance deployed on hardware NFB (a commodity
server running Ubuntu 14.04 OS). We studied both their
transaction processing capability and latency introduced.
As shown in Fig. 2, the transaction processing throughput
decreased from 2, 500 Transactions per second (Trans/s) to
nearly 1, 000 Trans/s when using virtualized FW. Similarly,
latency at both 90th and 99th percentiles increased similarly
from 500µs to 1, 300µs. Also, the latency per transaction
increased by nearly 250%. These results shows that different
NFBs implementation have varied processing capabilities.
Particularly, virtualized NFBs can have lower processing
capability with longer latency compared to other implemen-
tations.

2.2 Correlation with CPU & Memory

We then study the correlation of performance heterogeneity
of NFBs with different number of allocated CPUs. In this set
of experiments, we have first allocated only one vCPU (1
vCPUs, 2GB RAM) for both pfSense and Snort servers and
then increased the number of vCPUs to two, while keeping
the memory (2 vCPUs, 2GB RAM) and other configurations
unchanged.

The computed RTT from the recorded traffic has been
demonstrated in Fig. 3. Since no links in this setup are
over-subscribed, the likelihood of traffic congestion is low.
Thus, processing delay accounts for significant portion of
end-to-end latency. Clearly, Fig. 3a shows that having twice
as much hardware resource does not significantly improve
RTT as there is only about 5% improvement at the region
above 80 percentile. In comparison, the hardware switch
implementation has much smaller and predictable RTT,
even at the 99th percentile. Fig. 3b shows more diverse
performance results among two configurations for Snort
IDS/IPS in which 2 vCPUs could give significantly better
performance up to as much as 100%.

In addition, we have also noticed that the magnitude of
RTT for Snort is two orders higher than that of pfSense. This
is because the pfSense’s workload was mainly on examining
the packet header for NAT translation, whereas for IDS/IPS
the workload was mainly on deep packet inspection.

0 1 2 3 4 5

Round Trip Time (s) 10
-3

0

0.2

0.4

0.6

0.8

1

C
D

F

pfSense 1 vCPU 2GB RAM

pfSense 2 vCPUs 2GB RAM

Hardware (Pronto 3295)

pfSense 1 vCPU 4GB RAM

(a) NAT on hardware and virtual NFBs

0 2 4 6 8 10

Round Trip Time (s)

0

0.2

0.4

0.6

0.8

1

C
D

F

Snort 1 vCPU 2GB RAM

Snort 2 vCPUs 2GB RAM

Snort 1 vCPU 4 GB RAM

(b) IDS/IPS on virtual NFB

Fig. 3: CDF of RTTs for pfSense and Snort NFBs with
different allocated CPU and memory.

We then altered the configuration (1 vCPU, 2GB RAM)
to increase the size of memory from 1GB to 4GB (1 vCPU,
4GB RAM). The results shown in Fig. 3 exhibit only small
differences in performance across two configurations.

2.3 Observations

Clearly, thisds set of experiments has revealed that:
1) Programmable SDN switches can implement simple

NFs.
2) Significant performance diversity exists among hard-

ware and virtual NFs with different allocated system
resources.

3) The performance of NF is largely limited by NFB’s
processing capacity rather than its amount of memory.

These observations demonstrate that alongside the het-
erogeneity that we have considered, it is of profound im-
portance to take into account the capacity of an NF for
processing packets (Section 3.3.2).

3 PROBLEM MODELING

3.1 Heterogeneous NFBs

In Section 2, we have shown the heterogeneity on perfor-
mance among different NFB implementations. Thus, in this
paper, as opposed to existing works which mainly consider

4

TABLE 1: Notations

Symbols Descriptions
B B is the set of all NFBs
bi bi is an instance of B, i.e., bi ∈ B

bi.cap maximum capability of bi
bi.typeset supported NF types of bi

N N is the set of all NFs
ni ni is an instance of N, i.e., ni ∈ N

ni.type function type of ni

ni.cap processing requirement of ni

ni.location the NFB that hosts ni

P P is the set of all network policies
pi pi is an instance of P, i.e., pi ∈ P

pi.sep, pi.dep source and destination End Points of pi
pi.len number of NFs in pi

pi.set all possible sequence of pi with re-ordering

pi.chain
sequence of NFs that all flows matching pi
should traverse in order

Cost(pi) cost introduced by policy pi

D(ni, nj) delay between ni and nj

tp(ni) processing delay of ni

T (pi) expected delay for the flow constrained by pi

B(nj) NFBs that can host nj

A(bj) the set of NFs hosted on bj

Tupdate timer of HOPE periodical operation
PH Policies that need to be re-scheduled

homogeneous NFBs deployment, we consider a heteroge-
neous environment where NFs can be implemented at vari-
ous network locations, either in-network or at-edge, and on
different kinds of NFBs. For example, these heterogeneous
NFBs can be hardware middleboxes, commodity servers,
and (SDN) switches/routers. These NFBs implementations
are distinctively different in following ways:

• Hardware middbleboxes are usually vendor specific, pro-
prietary boxes for providing specific network func-
tions [17]. Their designs are often optimized for per-
formance but less extensible. They are implemented as
real hardware boxes that are often located in exact point
where flows should be operated [18].

• NFV servers are virtualized that can run multiple, and
theoretically, any types of virtual network functions
(VNFs). As they are built on virtualization, enable
flexibility running on commodity hardware. So, better
agility can be guaranteed [19].

• Some NFs can also be implemented on switches or
routers such as NAT, simple firewalls and load bal-
ancers. They are amongst hardware middleboxes. How-
ever, SDN also allows us to exploit OpenFlow switches
to increase the performance of service chain by in-
stalling some rules (i.e., NF) to their tables [20] [21].

Due to special properties of different implementations of
NFBs, they are suitable for different scenarios and appli-
cations. Therefore, we anticipate that the heterogeneous
implementation of NFBs will exist for the foreseeable future.
Fig. 4 shows an example of implementing a policy using
different types of NFBs.

NFV

Server

IPS

LB Mon

FW

FW

hardware

Middleboxes

Openflow

Switches

LB

Mon

IPS

NF

Instances

NFBs

Fig. 4: Service chain example for north-south traffic in DC:
FW → LB → IPS →Monitor

3.2 Network Policy Model

A table of notations that will be used in the following of the
paper is shown in Table 1.

Denote B = {b1, b2, . . .} to be the set of all NFBs in a data
center. For an NFB bi, there are two fields {cap, typeset}.
bi.cap denotes the maximum processing capability of bi,
measuring in number of packets per second (pps), e.g.,
3800 pps [22]. And bi.typeset specifies the set of supported
NF types on bi. For example, NFV servers theoretically
support all types of NFs, while hardware middleboxes and
OpenFlow switches can only support one or few types of
NFs. Without loss of generality, we assume that the memory
space of NFBs are enough to accommodate states informa-
tion of all NFs, i.e., bottleneck of NFBs is the processing
capacity as shown by experiment results in Section 2.

Let N = {n1, n2, . . .} be the set of all NF instances
in data center. Each NF ni has several important prop-
erties {type, cap, location}. The property ni.type defines
the function of ni, e.g., IPS/IDS, LB, or FW. The ni.cap is
essentially the processing capacity requirement of ni in pps.
And, ni.location indicates the NFB that currently hosts ni.

A centralized Policy Controller [11] is deployed in the
network to manage and configure all NFs in N, which may
belong to different applications. The Policy Controller can
monitor and control the liveness of NFs and NFBs, including
addition, failure/removal or migration of NFs. Network
administrators can specify and update policies through the
Policy Controller.

A service chain defines an ordered or partially ordered
set of abstract network functions and constraints, e.g., or-
dering, which need be applied to traffic. The set of enabled
service chains reflects operator service offerings and is de-
signed in conjunction with network policies [2].

The set of network policies, which can be determined
by operators or administrators, is defined as P. In practice,
one policy can be applied to multiple flows. For a policy
pi ∈ P, properties pi.sep and pi.dep define the Source
End Point (SEP) and Destination End Point (DEP) [5],
which refer to a device or an application that is the ul-
timate origination or destination entity of specific traffic.
In addition, pi.chain defines the sequence of NFs that all
flows matching policy pi should traverse in order, e.g.,
pi.chain = {n1, n2, n3}, where, for example, n1.type =

5

FW,n2.type = IPS, n3.type = Proxy. And, pi.len is the
length of pi.chain.

All NF instances in pi.chain must be assigned to appro-
priate NFBs beforehand, and we assume there are enough
NFBs to accommodate all required NFs in data center.
Since we consider heterogeneous NFBs, there are various
possible locations for each NF in pi.chain. For example,
in the above example of pi, n1.location could be a core
router, n2.location could be a hardware middlebox, and
n3.location could be an NFV server. An example of service
chain for north-south traffic in DC is given in Fig. 4.

3.3 Cost with Network Functions
3.3.1 Cost Definition
Since NFs may be placed on NFBs with different locations
and processing capability, the cost introduced by NFs place-
ment (service function chaining) for a policy are varied.
Many performance metrics can be used to measure such
cost, for example, latency, bandwidth. For a policy pi, its
cost is defined as follows:

Cost(pi) = α · T (pi) + β ·BW (pi) + . . . (1)

where T (pi), BW (pi), . . . are cost functions for each metric.
For example, T (pi) is the cost on latency of the whole ser-
vice chaining. BW (pi) is the cost calculated by bandwidth,
which can be set inversely proportional to bandwidth of ser-
vice chain path. Parameters α, β, . . . are weight factors for
each metric. Both cost functions and corresponding weight
values can be determined by administrators according to
application scenarios and requirements. And the total cost
of a policy Cost(pi) can be either calculated on single metric
or combination of multiple metrics.

3.3.2 Example: Cost on Delays
We will show an example of how to calculate the cost
of a policy based on latency, i.e., Cost(pi) = T (pi). For
simplicity, we define it as the total expected delay for a
policy, including the transmission delay among adjacent
NFs in the service chain and processing delay of all NFs
in the chain (see Equation 3). These two components are
explained below:

(1) Transmission delays
In order to steer traffic to the service chain, either Policy

Based Routing (PBR) or VLAN stitching can be used in data
centers [5] [23]. For either case, the intended solution in this
paper should be unaware of these schemes and is general
and applicable to these schemes. So, we do not consider the
detailed routing schemes between two NFBs.

Since, in production data centers, the transmission delay
of links in its path are relatively stable and can be easily
obtained/estimated through large-scale measurement [24],
we assume the transmission delay among NFBs are known
and can be obtained through the controller. The controller
will maintain a transmission delay matrixD. And,D(a, b) =
D(b, a) is the delay between node a and b. D(a, b) = ∞ if
the delay is unknown or they are unreachable and, in either
cases, these routes will not be considered for service chains.

(2) Processing delays of NFs
For an NF, say ni, we define its service time tp(ni) as the

time that ni takes to process a packet. Since that many NFs,

such as firewalls and load balancers, only process packet
headers of which sizes are fixed, ignoring variable length
data payloads. For NFs that check packet payloads, e.g.,
firewalls and IDS/IPS, their service time can be estimated
by assuming the largest packet size in the worst case, e.g.,
size MTU of the network or MSS of TCP segments. Thus,
the service time tp(ni) can be treated as a constant [25].
Specially, considering the processing capacity ni.cap of ni,
tp(ni) = 1/ni.cap.

3.3.3 Remarks
The Cost(pi) is to evaluate the deployment cost of a policy.
Many recent studies have consistently shown that latency
is the most important revenue related performance metric
in data centers [24] [26] [27] [28]. Thus, in the following
sections of this paper, we will primarily focus on the latency
(or delay) of a policy flow. However, the main idea in
this paper can be easily applied to other metrics as shown
above.

NFBs are considered over-provisioned in the network
due to two reasons. First, the heterogeneity NFBs, as dis-
cussed in Section 1, can provide a large solution space
for optimal chaining of NFs without oversubscribing any
individual NFBs. Second, the computational resources and
middleboxes are often overprovisioned rather than over-
subscribed [29]. Moreover, when NFV is implemented, ad-
ministrators can easily create new instances on commodity
servers to handle large service requirements [30].

3.4 Re-ordering of Service Chain
To investigate more opportunity to optimize service chain
schedule, we have surveyed a wide range of common NFs
and service chains to understand their common behaviors
and properties. Most of these NFs perform limited types
of processing on packets, e.g., watching flows but making
no modification, dropping packets, changing packet headers
and/or payload. For example, in the simplest case, a flow
monitor (FlowMon) obtains operational visibility into the
network to characterize network and application perfor-
mance, and it never modifies packets and flows [5]. Some
types of NFs, e.g., IDS, will check packet headers and pay-
load, and raise alerts to the system administrator. NFs, such
as firewalls and IPS, usually do not change packet headers
and payload, but they may use packet header information
to make decision on whether to drop or forward the packet.
Some NFs (e.g., NAT and LB) may check IP/port fields in
packet headers and rewrite these fields for processing [9].
Others (e.g., traffic shaper) do not modify packet headers
and payloads, but may perform traffic shaping tasks, such
as active queue management or rate limiting [18].

Due to the nature of the functions applied, certain order-
ing of NFs naturally exists for a service chain. For instance,
a service chain, which is applied to north-south traffic in
datacenters, is composed by a VPN and a Web Optimization
Control (WOC). Normally, the WOC is not effective on VPN
traffic, requiring VPN termination prior to WOC [5]. For
other service chain with IDS and FlowMon, since IDS never
change the packet content, FlowMon can be applied to the
traffic after IDS or placed prior to IDS.

In order to model these properties of NFs behaviours
and leverage those properties to optimize service chain

6

TABLE 2: Examples of the dynamic actions performed by
different NFs that are commonly used today [9]

Network Functions Input Actions Type
FlowMon Header No change Static

IDS
Header
Payload

No change Static

IP Firewall Header Drop? Dropper

IPS
Header
Payload

Drop? Dropper

NAT Header Rewrite header Modifier
Load balancer Header Rewrite header Modifier
Redundancy
eliminator

Payload Rewrite payload Modifier

schedule among heterogeneous NFBs, we can classify NFs
into several classes according to their behaviours:
• Modifier: NFs that may modify the content of a packet

(header or payload), e.g., NAT, Proxy.
• Dropper: NFs that may drop packets of flows, but never

modify header of payload of packets, e.g., firewall.
• Static: NFs do not modify the packet or its forwarding

path, and in general do not belong to any classes above,
e.g., FlowMon, IDS.

Table 2 provides a summation of the dynamic actions per-
formed by different types of NFs that are commonly used
today. In addition to the three types above, some NFs may
change the rate of flows, e.g., traffic shaper. These NFs only
change the interval time among consecutive packets and do
not modify content of packets. Since we mainly focus on
NFs operations on each packet, they will be treat the same
as static NFs.

To preserve the correctness of service chains, users can
specify constraints on the order of NFs in service chains.
For example, the order of consecutive static NFs can be
switched. However, static NFs can not be moved across
Modifiers, as this might lead to incorrect operations.

Considering such re-ordering of service chain, we define
pi.set to be a set of all possible NFs sequences of the service
chain, i.e., pi.set = {l1, l2, . . .}. For example, suppose the
service chain of pi is FW1 → IDS1 → FlowMon1, and
the position of IDS1 and FlowMon1 can be swapped.
Then, pi.set = {l1 = (FW1, IDS1, F lowMon1), l2 =
(FW1, F lowMon1, IDS1)}. NFs in pi.chain can be orga-
nized according to any sequence defined in pi.set. More-
over, pi is called satisfied if and only if the following con-
dition holds, i.e., the final assigned sequence of policy pi
must be equal to one accepted list in pi.set if re-ordering is
allowed:

pi.chain[j] == l[j],∀j = 1, 2 . . . , pi.len,∃l ∈ pi.set (2)

Specially, if pi.set contains only one list and equal to
pi.chain, it means that re-ordering is impossible or disabled
by users.

3.5 Heterogeneous Network Policy Placement Problem
In this paper, since we use the latency as an example metric
to measure the performance of service chaining. We only
consider the delay of a policy pi, denoted by T (pi), for the
cost function Cost(pi). Thus, based on previous analysis,

the expected delay for the flow constrained by policy pi can
be defined as:

Cost(pi) = T (pi) = D(pi.sep, pi.chain[1])

+

pi.len−1∑
j=1

(D(pi.chain[j], pi.chain[j + 1]) + tp(pi.chain[j]))

+D(pi.chain[pi.len], pi.dep)
(3)

We aim to reduce the total delay by efficiently placing
NFs onto heterogeneous NFBs while strictly adhering to
network policies. Denote A to be an allocation of NFs to
NFBs and A(bj) is the set of NFs hosted on bj .

The Heterogeneous Network Policy Placement problem is
defined as follows:

Definition 1. Given the set of policies P, NFBs B and delay
matrix D, we need to find an appropriate allocation of NFs
A, which minimizes the total expected end-to-end delays of the
network:

min
∑
pk∈P

Cost(pk)

s.t. pk is satisfied,∀pk ∈ P
ni.location 6= ∅,∀ni ∈ pk.chain,∀pk ∈ P
ni.type ∈ ni.location.typeset,∀ni ∈ pk.chain,∀pk ∈ P∑

ni∈A(bj)
ni.cap ≤ bj .cap,∀bj ∈ B

(4)

The first two constraints ensure that NFs of all service
chains are appropriately accommodated by heterogeneous
NFBs. The third constraint ensures that types of NFs and
NFBs must be consistent. The forth constraint is the capacity
constraint of all NFBs. The above problem can be easily
proven to be NP-Hard:

Proof. To show that Heterogeneous Network Policy Placement
problem is NP-Hard, we will show that the Multiple Knap-
sack Problem (MKP) [31], whose decision version has al-
ready been proven to be strongly NP complete, can be
reduced to this problem in polynomial time.

Consider the following input for the MKP problem: there
are |M | items, and the item size of mi ∈M is mi.req. There
are |K| knapsacks, the ki ∈ K has limited capacity of ki.cap.
The profit of assigning mi to kj is fij . The objective of MKP
is to maximizing the total profit.

If we take each item mi to be an NF ni, where mi.req =
ni.cap. Each knapsack kj is regarded as an NFB bj that
kj .cap = bj .cap. Consider a special case that each service
chain of all policies contains only one NF. And the profit
fij is corresponding to the negative of the cost of assigning
ni to bj . Suppose that the cost between servers and NFBs
are the same. And there are enough NFBs to hold all
NFs, meaning that no NFBs are saturated. Thus, the MKP
problem becomes a special cases of the Heterogeneous Policy
Placement problem. And the objective is to minimizing the
total cost, or maximizing the total profit.

Therefore, the MKP problem is reducible to the Heteroge-
neous Policy Placement problem in polynomial time, and hence
the Heterogeneous Policy Placement problem is NP-hard.

7

4 HETEROGENEOUS POLICY ENFORCEMENT

In this section, we introduce HOPE, a Heterogeneous
netwOrk Policy Enforcement scheme which utilize of the
heterogeneity of NFBs.

4.1 Optimal Service Chain Path

We consider an online solution which processes one service
chain at a time when a new policy requirement arrives, say
pi. The problem is to find appropriate NFBs to accommodate
all NFs of pi, ensuring that pi is satisfied, with an objective
to minimize its total cost Cost(pi). Let NFBs, which are able
to host an NF nj , be defined as:

B(nj) ={bk|nj .type ∈ bk.typeset and∑
n′∈A(bk)

n′.cap+ nj .cap ≤ bk.cap,∀bk ∈ B} (5)

Considering the (re-)ordering constraints and heteroge-
neous capability among different NFBs, the optimal service
chain path with the smallest expected cost for a policy does
not need to be the shortest path from source to destination
end point.

Furthermore, two NFs in the chains of pi may be as-
signed to the same NFB and share the same capacity,
making the problem much more complex and challenging.
For example, suppose both two NFs of pi, say n1 and n2
(n1 ≺l n2,∃l ∈ pi.set)1, can be placed in NFB b, but the
residual capacity of b can only accept one of them. If we
assign n1 to b, b would be unable to accept pi later. In this
case, n1 and n2 are called conflict nodes. A service chain path
from the source will be blocked by the latter one of the conflict
nodes.

Hence, we design the OSP (Optimal Service chain Path)
algorithm to find the optimal allocation in such situation,
as shown in Algorithm 1. Set S contains all NFBs whose
final optimal distance from the source have already been
determined and is initialized to be empty in line 1. Set Q
refers to all NFBs that might be used host remaining NFs in
the policy. Since some NFBs may host multiple types of NFs,
it is possible that an NFB may appears in both S and Q. All
NFBs that are able to host NFs in the policy, determined by
Equation (5), are added to Q initially. The d(v, j) is used
to maintain the current length of the service chain path
from source to jth NFs in pi, which is hosted by NFB v.
It is initialized to be infinite and will be relaxed during the
course of the algorithm. All temporary solution are kept in
prev(v, j), which indicates the previous hop of the current
optimal path from v to the source pi.sep. During each while
loop, at most one node u can find the optimal path to source
and be added to set S (line 11). Then, other related nodes
can relax their optimal distance to the source through u (line
15∼23). Conflict nodes are handled in line 18. The optimal
service chain path is maintained in prev and can be obtained
through function getPath(). If re-ordering of service chain
is enabled, some operations in Algorithm 1 must be aware of
the index of candidate chain in pi.set, making sure they are
consistent, for example, d(u, j), prev(v, j) and getPath().

1. n1 ≺l n2 denotes that n1 appears before n2 in the ordered list l.

Algorithm 1 HOPE-OSP: Optimal Service Chain Path

Input: pi, B,N, D
Output: Optimal service chain path for pi

1: S ← ∅
2: Q← ∪

l∈pi.set,1≤j≤pi.len
B(l[j])

3: d(v, j)←∞,∀v ∈ Q,∀j = 1, 2, . . . , pi.len
4: prev(v, j)← undefined, ∀v ∈ Q,∀j = 1, 2, . . . , pi.len
5: d(pi.sep, 0)← 0
6: while Q 6= ∅ do
7: (u, j)← argmin

u∈Q,1≤j≤pi.len
d(u, j)

8: if u = pi.dep then
9: break

10: end if
11: S ← S ∪ {u}
12: if u /∈ B(l[k]),∀l ∈ Pi.set,∀k > j then
13: Q = Q \ {u}
14: end if
15: nk ← NF in pi.set that will be placed in u
16: for each v ∈ ∪

l∈pi.set
B(l[j + 1]) do

17: if d(v, j + 1) > d(u, j) +D(u, v) + tp(nk) then
18: if v /∈ GETPATH(u, j) or

∑
nx∈A(v) nx.cap +

nk.cap ≤ v.cap then
19: d(v, j + 1)← d(u, j) +D(u, v) + tp(nk)
20: prev(v, j)← u
21: end if
22: end if
23: end for
24: end while
25: return GETPATH(pi.dep, pi.len)

26: function GETPATH(node, index)
27: path← ∅
28: u← node
29: j ← index
30: while prev(u, j) is defined and j > 0 do
31: insert u at the beginning of path
32: u← prev(u, j)
33: j ← j − 1
34: end while
35: insert u at the beginning of path
36: return path
37: end function

Lemma 1. In Algorithm 1, when an NFB, say u, is added to
S for the jth NFs in pi, d(u, j) is the shortest path length from
pi.sep to u.

Proof. If there is no conflict nodes in the current service chain
path, Algorithm 1 becomes a variation of Dijkstra algorithm
and Lemma 1 can be easily proved to be always hold.

Otherwise, denote pi.sep to be s and let δj(s, u) be the
distance of the shortest path from s to u, which hosts the
jth NF of pi. Assume u is the first node for which d(u, j) ≥
δj(s, u), when it is added to S. We must have u 6= s because
that s is the first node added to S and d(s, j) = δj(s, s) = 0.
Because u 6= s and S 6= ∅ before u is added to S, there is
at least one shortest path from s to u. Suppose y is the first
node along this optimal path such that y ∈ Q, hosting the

8

x y

s ub ca

S

Fig. 5: Example for proof of Lemma 1

kth NF of pi (k < j). Let x ∈ S be y’s predecessor. Because
u is added to S before y, d(u, j) ≤ d(y, k).

So, the optimal path can be decomposed as s x →
y u. See Fig. 5 for an example. Note that there should be
no conflict nodes for y on this path, and this path may or
may not go through edge a→ b.

Because y occurs before u on the optimal path from s to
u and all edge weights and costs are non-negative, we have
δk(s, y) ≤ δj(s, u).

As u is chosen as the first node for which d(u, j) 6=
δj(s, u) when it is added to S and x ∈ S, we have
d(x, k − 1) = δk(s, x) when x was added to S. Edge
x → y was relaxed at that time (line 16 ∼ 23). So,
d(y, k) = δk(s, y) ≤ δj(s, u) ≤ d(u, j).

Thus, d(u, j) = d(y, k) = δj(s, u), which contradicts our
choice of u.

According to Lemma 1, we can easily derived that

Theorem 1. Algorithm 1 can always output a shortest service
chain path.

The complexity of the algorithm depends on the way
of finding the (u, j) with the smallest cost d(u, j). Let
m = |B| · |pi.set| · pi.len to be all possible NFB elements
of (u, j). Because paths with conflict nodes failed to reach
the destination, not all elements are checked in Algorithm
1. Thus, each elements (u, j) is checked at most once (line
7 ∼ 14), and the neighbor of each element is examined in
the for loop of lines 16 ∼ 23 at most once during the course
of the algorithm.

Considering the operations of distance in Algorithm 1, a
priority queue [32] to implement efficient operations. Priority
queue is a data structure consisting of a set of item-key
pairs, i.e., distance for each node in Algorithm 1: insert, e.g.,
implicit in line 3; extract-min, returning the element with the
minimum distance in line 7, i.e., the argmin operation; and
decrease-key, decreasing the distance of a given element in
line 19. Furthermore, Fibonacci heaps [33] implement insert
and decrease-key in O(1) amortized time, and extract-min in
O(log n) amortized time, where n is the number of elements
in the priority queue. So, by using Fibonacci heaps, the run-
ning time of Algorithm 1 is O(m2 +m logm). Considering
that pi.len � |B| usually, the running time for optimal
service chain path is acceptable.

4.2 Greedy Approach

Algorithm 1 ensures the optimality of the service chain
path. However, it has one major drawback that its O(m2 +

Algorithm 2 HOPE-Greedy

Input: pi, B,N, D
Output: Service chain path for pi

1: path← ∅
2: B′j ← Bj ,∀j = 1, 2 . . . , pi.len
3: j ← 1
4: while j ≤ pi.len do
5: if B′j = ∅ then
6: if j = 1 then
7: path← ∅ . no available path
8: break
9: end if

10: remove last node in path
11: B′j ← Bj

12: j ← j − 1
13: continue
14: end if
15: (u, nk)← argmin

u∈B′
j

D(path[end], u) + tp(nk) . nk is

the jth NF of pi that will be placed in u
16: B′j ← B′j \ {u}
17: if u 6∈ path or

∑
n′∈A(u)

n′.cap+ nk.cap ≤ u.cap then

18: append u at the end of path
19: j ← j + 1
20: end if
21: end while
22: return path

m logm) time complexity. Thus, we also propose a greedy
approach for HOPE, which trades off small accuracy for
significantly faster speed.

Algorithm 2 describes detailed steps of the greedy ap-
proach of HOPE. The main idea is that: starting from the
first element in the policy, for each NF in the service chain,
the algorithm will choose an NFBs with the smallest delay
to the source end point or the previous NF in the service
chain. If the current path is blocked by a conflict node, the
algorithm will fall back to the previous NF and choose the
NFB with the second smallest delay and so on. This process
will continue until the destination end point is reached, or
there is no available path. If service chain re-ordering is
enabled and multiple candidate service chain are available
in pi.set, the Bj contains all acceptable NFBs defined in
Equation 5. In this case, similar to Algorithm 1, the index
of chain in pi.set should be consistent during operations of
Algorithm 2. Specially, for any l1 ∈ pi.set and l2 ∈ pi.set
(l1 6= l2), if l1[j] = l2[j], same NFBs obtained for l1 and
l2 can be merged as a single node, otherwise, they will be
treated as different nodes.

4.3 Stability and Adaptability

A single network flow may change dynamically. However,
a network policy, such as “all traffic should be checked by
application firewall”, is applied to a group of traffic flows
once it is defined. Hence, network policy is often stable and
is not transient. As HOPE works on per network policy
rather than per traffic flow level, we expect our HOPE
scheme will be equally stable.

9

Algorithm 3 HOPE Operation

1: PH ← ∅
2: Set timer Tupdate
3: loop
4: event←getEvent()
5: switch event do
6: case new policy
7: pi ←new arrived policy
8: Insert pi at head of PH

9: Trigger event schedule policy
10: case timer fires
11: CollectInfo() . Pull network information
12: Ptemp ← all affected policies
13: PH ← PH ∪ {Ptemp}
14: Update timer Tupdate
15: Trigger event schedule policy
16: case schedule policy
17: while PH 6= ∅ do
18: pi ←Head(PH) . Obtain head item of PH

19: path←HOPE-OSP() Or HOPE-Greedy()
20: Arrange pi according to path
21: PH ← PH \ {pi}
22: end while
23: end switch
24: end loop

In the meantime, we also reckon the fact that traffic
demand could change slowly over time and it is necessary
to adapt to the changes to ensure optimality. In response
to such dynamics, HOPE uses a set PH to keep all policies
that need to be processed. The Policy Controller of HOPE can
periodically (controlled by a timer Tupdate) poll switches for
traffic statistics to look for the changes in traffic demand
in specific part of network topology, and then all policies
that have been affected will be added to PH . New arrived
policies will be placed at head of the PH so that they can be
processed immediately with higher priority.

The detailed operations of HOPE are described in Algo-
rithm 3. Initially, PH is set to be empty and timer Tupdate is
initialized. The function getEvent() will be blocked until an
event occurs. Three events are defined: new policy refers to
arrival of policy configuration from users, timer fires is trig-
gered when Tupdate expires and schedule policy let HOPE call
either HOPE-OSP() or HOPE-Greedy() to process policies in
PH . Particularly, both new policy and timer fires will trigger
schedule policy event, i.e., line 9 and 15. New arrived policy
request will be placed at the head of PH (line 8), while oth-
ers, e.g., existing policies affected by networking dynamics,
are appended at the end of PH (line 13). CollectInfo() is used
to collect networking and user requirement information for
detecting any dynamic changes.

5 HOPE IMPLEMENTATION

We have implemented some core components in Ryu con-
troller and Mininet environment.

5.1 Policy Controller
The policy controller is needed to execute HOPE scheme,
as well as managing NFBs and policies. In current im-

plementation, the policy controller is implemented as an
application module in Ryu. One reason to chosen Ryu is
that it has a built in integration for Snort [15], which enables
bidirectional communication using unix domain sockets.
The policy controller interacts with NFBs that host firewalls
using OpenFlow protocol. Although frameworks such as
OpenNF [11] can also be added to enrich functionality of the
controller, we note that the scope of this paper is to provide
a proof-of-concept implementation rather than a full-blown
testbed.

Besides managing NFBs and accepting policy configu-
ration from network operators/administrators, the policy
controller is also responsible for collecting link latency from
Pingmesh Agent and maintaining an in-memory all-pair
unidirectional end-to-end latency table which is essential to
the HOPE scheme.

5.2 Link Latency
HOPE needs to obtain link latency to construct the transmis-
sion delay matrix D. So, we have implemented a reduced
version of Pingmesh Agent [24] using C++. This Pingmesh
Agent pings all servers using TCPing, and measures round-
trip-time (RTT) from the TCP-SYN/SYN-ACK intervals.
This module is light-weighted. Our primary measurement
results shows that the average memory footprint is less than
2MB, and the average CPU usage is less than 1%. Ping traffic
is very small and ping interval is configurable according to
actual needs.

Each agent will upload collected results to the controller
periodically for constructing all pairs end-to-end latency ta-
ble, i.e., the delay matrix D, which can be queried by HOPE
later. This is because we assume that most of deployed
NFs will run in commodity servers. There are also some
in-network hardware NFBs, as defined in Section 3.1, which
are either SDN switches or attached directly to switches. In
this case, the delay from/to these particular devices can be
queried through OpenFlow’s port statistics APIs or other
techniques such as OpenNetMon [34].

As described in Section 3.3, the processing delay of NFs
is obtained from tp(ni), which is inverse proportional to
NF’s capacity. We do not consider queuing delay in our
testbed implementation because HOPE ensures that NFBs
are not overloaded. Moreover, as explained in Section 3.3.2,
the computational resources and middleboxes are often
overprovisioned rather than oversubscribed [29]. We also
note that there are also some other techniques which are
useful for monitoring processing capacities such as sFlow
[35].

6 EVALUATION

6.1 Evaluation Environment and Setup
In addition to testbed implementation, we have also exten-
sively evaluated the performance of HOPE scheme at scale
in ns-3.25 on a Ubuntu 14.04.5 server with Intel(R) Xeon(R)
E5-2670 2.3GHz CPU and 8GB of memory. We simulated a
fat-tree data center topology with factor k ranged from 4
to 20, meaning that there are at most 2000 servers and 500
switches in these setups. Each link transmission latency in
the network is randomly distributed from tens to hundreds
of microseconds [36].

10

5 10 15 20
50

60

70

80

90

100

110

Factor K

A
v
e
ra

g
e
 l
a
te

n
c
y
 o

f
s
e
rv

ic
e
 c

h
a
in

 (
m

s
)

HOPE−OSP
HOPE−OSP w/o Re−order
HOPE−Greedy
HOPE−Greedy w/o Re−order

(a)

40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

Latency of service chain (ms)

C
D

F

HOPE−OSP
HOPE−OSP w/o Re−order
HOPE−Greedy
HOPE−Greedy w/o Re−order

(b)

1 2 3 4 5
40

50

60

70

80

90

100

110

Length of service chain

A
v
e
ra

g
e
 l
a
te

n
c
y
 o

f
s
e
rv

ic
e
 c

h
a
in

 (
m

s
)

HOPE−OSP
HOPE−OSP w/o Re−order
HOPE−Greedy
HOPE−Greedy w/o Re−order

(c)

40 60 80 100 120 140
0

0.2

0.4

0.6

0.8

1

Latency of service chain (ms)

C
D

F

HOPE−OSP
HOPE−OSP w/o Re−order
HOPE−Greedy
HOPE−Greedy w/o Re−order

(d)

Fig. 6: Comparison of latency of service chain: (a) Average latency for various network scale; (b) Latency of service chain
for k = 20; (c) Average latency for various length of service chain; (d) Latency of service chain for length = 4

In all experiments, traffic flows are randomly generated
to transmit packets between two servers. Each flow is re-
quired to traverse a sequence of various NFs – the service
chain – before being forwarded to their destinations as
specified by policies. In our experiments, each service chain
is comprised of 1∼5 NFs (normal distribution) including
FW, IDS, RE, LB, NAT, Proxy and (traffic) Monitor [5].
Specially, IDS and Monitor belongs to static NFs while
others belongs to Modifier or Dropper (see Table 2). The
processing requirement of NFs are generated randomly in
pps (see Section 3.2). Thus, the processing latency of NFs are
varied accordingly.

Each NFB is modeled with random capability, e.g., resid-
ual capacity (number of packets it can process per second).
Each NFB is also assigned a set of NF types that it supports.
Therefore, an NFB can accept a NF as long as it has sufficient
residual capacity and the NF’s type is amongst its support
list. NFBs are deployed in the network, including OpenFlow
switches, hardware middleboxes and NFV servers. The set
of NF types supported by NFBs are determined by their
implementations. NFV servers are designed to support all
types of NFs, while hardware middleboxes are set to sup-
port only one type of NFs and OpenFlow switches can
support few simple NFs, e.g., NAT and LB.

The policy controller (as described in Section 5.1) is also
used. For simplicity, the scheme using OSP (Algorithm 1)
to achieve optimal schedule for a service chain is referred
as HOPE-OSP, and the greedy approach (Algorithm 2) is
referred as HOPE-Greedy.

As a comparison, we have also implemented Branch-
and-bound [37] optimization algorithm to verify the optimal-
ity of HOPE-OSP. The Branch-and-bound algorithm explores
branches of a tree of candidate solutions, and branches
are checked against upper and lower estimated bounds
on the optimal solution, which is finally obtained through
recursive search.

6.2 Evaluation Results
Fig. 6 demonstrates the performance of HOPE with regard
to the latency of service chain. By default, re-ordering is
enabled for both schemes. We also evaluate the performance
difference when re-ordering is disabled (indicated by “w/o
Re-order” in the figures).

Fig. 6a shows the average latency of all service chains
under different network scales with the factor k of fat-tree

ranging from 4 to 20. We observed that Branch-and-bound
curves completely overlap with that of HOPE-OSP, hence
are omitted for readability in Fig. 6. However, overlapped
curves mean that HOPE-OSP can always find a service
chain path with the same latency as that of Branch-and-
bound, which is optimal. This is in line with our theoretical
proof in Theorem 1 that HOPE-OSP can always output the
optimal service chain path for a policy. In comparison, the
HOPE-Greedy approach could fall behind both HOPE-OSP
and Branch-and-bound by up to 29.4%. Re-ordering can be
optionally turned off, and our results show that this can
slightly increase total latency by 4%. However, for HOPE-
Greedy, there is no obvious effect whether the re-ordering
of service chain is enabled or not. A detailed breakdown
view is further shown in Fig. 6b for all policies for a large
scale network when k = 20. Particularly, the HOPE-OSP
can outperform HOPE-Greedy scheme by 83% at the 99th
percentile.

Fig. 6c reveals that average latency increases linearly
with the length of service chain when all NFBs have suffi-
cient capacity for accommodating all NFs. Obviously, when
there is only one NF in the service chain, re-ordering is not
needed. The breakdown of CDF for latency of service chain
whose length is comprised of four NFs shown in Fig. 6d.
It unveils that amongst HOPE’s two algorithms, HOPE-
OSP outperforms HOPE-Greedy by 33.2%. And disabling
re-ordering can degrade the performance of HOPE-OSP by
8.6%. We also notice that disabling re-ordering can give
HOPE-OSP a long tail, meaning that large latency can occur
in the high percentile region.

Next we study the performance of different schemes
in terms of system runtime in the Ryu controller. This is
essentially to test the performance of HOPE controller for its
efficiency and scalability in cloud data center environment.
Fig. 7 shows the average total running time to process a
policy increases exponentially for all schemes. Nevertheless,
as we can see from this figure that HOPE-Greedy without
re-ordering is the most efficient methods, consuming only
0.74ms for k = 20 to process a policy. This is because
HOPE-Greedy scheme has the smallest search space. On
the contrary, HOPE-OSP can complete one policy placement
cycle for at 2.8ms and Branch-and-bound needs nearly 1s.
By disabling re-ordering, running time of HOPE-OSP can
be improved by 37% on average. Among HOPE-OSP and
HOPE-Greedy, the latter is almost 2.5 times more efficient

11

4 6 8 10 12 14 16 18 20
10

−1

10
0

10
1

10
2

10
3

10
4

Factor K

R
u
n
 t
im

e
 (

m
s
)

HOPE−OSP
HOPE−OSP w/o Re−order
HOPE−Greedy
HOPE−Greedy w/o Re−order
Branch−and−Bound
Branch−and−Bound w/o Re−order

Fig. 7: Performance comparison on running time

that the former one. This means that processing 20K ACL
policies for a large enterprise [3] would merely require 56s
and 14.8s for HOPE-OSP and HOPE-Greedy respectively
(comparing to approximately 5.5 hours required by Branch-
and-bound optimization).

7 RELATED WORKS

Network configurations and management are complex tasks
and usually governed by network policies. When de-
ployed in the network, a policy is translated and imple-
mented as one or more packet processing rules in a di-
verse range of “middleboxes” such as WAN optimizers,
load balancers, IDS/IPS, application acceleration boxes,
network- and application-level firewalls, and application-
specific gateways [38] [39]. Middleboxes are critical part of
today’s networks and it is reasonable to expect that they will
remain so for the foreseeable future [40].

SDN and NFV have enabled more flexible middlebox de-
ployments over the network while still ensuring that specific
subsets of traffic traverse the desired set of middleboxes in a
predefined order [41]. For example, Chaithan et al. [3] tack-
led the problem of automatic, correct and fast composition
of multiple independently specified network policies by de-
veloping a high-level Policy Graph Abstraction (PGA). Anat
et al. [18] presented OpenBox, which decouples the control
plane of middleboxes from their data plane, and unifies the
data plane of multiple middlebox applications using entities
called service instances. There are also many other works
on correct policy compositions and enforcement [9] [10],
consolidating policy rules to end hosts [42] and network
switches [43], or providing a framework for migrating mid-
dleboxes states [11], or policy-aware application placement
to incorporate policy requirements [38] [44] [45].

In the meantime, with network programmability en-
abled by SDN and NFV technologies, such policy rules can
also be implemented outside of traditional “middleboxes”
in network switches [46] as well as end-hosts [42]. Jackson
et al. [8] described the design of SoftFlow, an extension of
Open vSwitch designed to bring tightly integrated middle-
boxes to network virtualization platforms. One of the design
requirements for today’s cloud data centers is to support the
insertion of new middleboxes [47].

However, given the large variety of NF entities in terms
of both types (e.g., hardware middleboxes, NFV and Open-

Flow switches) and network locations, inappropriate selec-
tions not only eliminate the advantage of SDN and NFV but
could also cause severe consequences including data center
outage.

Furthermore, most data center applications are sensitive
to network latencies. These latencies can be introduced by
network congestion as throughput-intensive applications
cause queuing at switches that delays traffic from latency-
sensitive applications. Existing techniques to combat queu-
ing are to prioritize flows such that packets from latency-
sensitive flows can “jump” the queue [48]; to centrally
schedule all flows for every server so no flows will have
to queue [49]; or to pace end host packets to achieve guar-
anteed bandwidth for guaranteed queuing [50].

8 DISCUSSIONS

HOPE aims to enforce policy schedule in heterogeneous
NFBs environment. In this paper, delay is used as an ex-
ample to demonstrate how HOPE design would work. In
practice, other metrics such as bandwidth and throughput
can also be included. The detailed definition of Equation 1
need to be determined by administrators according to ap-
plication scenarios and requirements.

As data center resource including computation power
and network bandwidth is often overprivisioned [29],
HOPE exploits this fact and assumes that NFBs resources
are over-provisioned in the networks, such as OpenFlow
switches and NFV servers, ensuring that NFBs are not
overloaded. However, in case of burst traffic, temporary
network congestion might happen, increasing delay of the
service chain. Currently, such situation could be captured
by the Policy Controller and reflected during the periodi-
cally cost calculation, as shown in Section 4.3. More other
improvements could be considered in future, e.g., more
elaborated optimizing scheme with traffic prediction and
queue modeling.

9 CONCLUSIONS

In today’s data centers, network functions can be deployed
in different implementations of NFBs. For example, in addi-
tion to hardware middleboxes, network functions can also
be implemented on OpenFlow switches and NFV servers.
Such heterogeneous environment of NFBs for policy alloca-
tion remain unexplored in previous research works. Thus, in
this paper, we study the Heterogeneous Policy Enforcement
Problem with a focus on the latency. We first analyze and
model the optimization problem, which is shown to be NP-
Hard. And then, we simplified the problem and proposed
the HOPE scheme, which is proved to be able to find the
optimal service chain path for each policy. An efficient
greedy approach of HOPE is also proposed and discussed.
Extensive evaluation results and comparisons with Branch-
and-bound approach have demonstrated high effectiveness
and optimality of HOPE.

ACKNOWLEDGMENTS

This work has been partially supportedby Chinese Na-
tional Research Fund (NSFC) No. 61772235 and 61502202;

12

the Fundamental Research Funds for the Central Uni-
versities 21617409; the UK Engineering and Physical Sci-
ences Research Council (EPSRC) grants EP/P004407/2
and EP/P004024/1; FDCT 0007/2018/A1, DCT-MoST Joint-
project No. 025/2015/AMJ of SAR Macau; University of
Macau Funds No. CPG2018-00032-FST & SRG2018-00111-
FST; NSFC Key Project No. 61532013; National China 973
Project No. 2015CB352401; 985 Project of Shanghai Jiao Tong
University: WF220103001; Natural Science Foundation of
Guangdong Province No. 2017A030313334; and American
University of Sharjah.

REFERENCES

[1] Y. Zhang, N. Beheshti, L. Beliveau, G. Lefebvre, R. Manghir-
malani, R. Mishra, R. Patneyt, M. Shirazipour, R. Subrahmaniam,
C. Truchan et al., “Steering: A software-defined networking for
inline service chaining,” in 21st IEEE International Conference on-
Network Protocols (ICNP). IEEE, 2013, pp. 1–10.

[2] P. Quinn and T. Nadeau, “Problem Statement for Service
Function Chaining,” RFC 7498, Apr. 2015. [Online]. Available:
https://rfc-editor.org/rfc/rfc7498.txt

[3] C. Prakash, J. Lee, Y. Turner, J.-M. Kang, A. Akella, S. Banerjee,
C. Clark, Y. Ma, P. Sharma, and Y. Zhang, “PGA: Using graphs
to express and automatically reconcile network policies,” ACM
SIGCOMM Computer Communication Review, vol. 45, no. 4, pp. 29–
42, 2015.

[4] A. M. Medhat, T. Taleb, A. Elmangoush, G. A. Carella, S. Covaci,
and T. Magedanz, “Service function chaining in next generation
networks: State of the art and research challenges,” IEEE Commu-
nications Magazine, vol. 55, no. 2, pp. 216–223, 2017.

[5] S. Kumar, M. Tufail, S. Majee, C. Captari, and S. Homma, “Service
function chaining use cases in data centers,” Internet Draft, IETF
SFC WG, Tech. Rep. draft-ietf-sfc-dc-use-cases-06, February 2017.

[6] N. Huin, A. Tomassilli, F. Giroire, and B. Jaumard, “Energy-
efficient service function chain provisioning,” Journal of Optical
Communications and Networking, vol. 10, no. 3, pp. 114–124, 2018.

[7] L. Cui, F. P. Tso, and W. Jia, “Heterogeneous network policy
enforcement in data centers,” in 2017 IFIP/IEEE Symposium on
Integrated Network and Service Management (IM). IEEE, 2017, pp.
552–555.

[8] E. J. Jackson, M. Walls, A. Panda, J. Pettit, B. Pfaff, J. Rajahalme,
T. Koponen, and S. Shenker, “Softflow: A middlebox architecture
for open vswitch.” in USENIX Annual Technical Conference, 2016,
pp. 15–28.

[9] Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu,
“SIMPLE-fying middlebox policy enforcement using SDN,” ACM
SIGCOMM Computer Communication Review, vol. 43, no. 4, pp. 27–
38, 2013.

[10] S. K. Fayazbakhsh, L. Chiang, V. Sekar, M. Yu, and J. C. Mogul,
“Enforcing network-wide policies in the presence of dynamic
middlebox actions using FlowTags,” in Proc. NSDI, vol. 14, 2014,
pp. 533–546.

[11] A. Gember-Jacobson, C. P. Raajay Viswanathan, R. Grandl,
J. Khalid, S. Das, and A. Akella, “OpenNF: enabling innovation
in network function control,” in Proc. of ACM SIGCOMM, 2014,
pp. 163–174.

[12] T. Lukovszki, M. Rost, S. Schmid, and S. Schmid, “It’s a Match!
Near-Optimal and Incremental Middlebox Deployment,” ACM
Sigcomm Computer Communication Review, vol. 46, no. 1, pp. 30–
36, 2016.

[13] iperf. [Online]. Available: https://iperf.fr
[14] Electric Sheep Fencing LLC. pfsense. [Online]. Available:

https://blog.pfsense.org/
[15] Cisco. Snort. [Online]. Available: https://www.snort.org
[16] G. Wang and T. S. E. Ng, “The impact of virtualization on network

performance of amazon ec2 data center,” in Proceedings of the
29th Conference on Information Communications, ser. INFOCOM’10.
Piscataway, NJ, USA: IEEE Press, 2010, pp. 1163–1171. [Online].
Available: http://dl.acm.org/citation.cfm?id=1833515.1833691

[17] C. Wang, X. Yuan, Y. Cui, and K. Ren, “Toward secure outsourced
middlebox services: Practices, challenges, and beyond,” IEEE Net-
work, 2017.

[18] A. Bremler-Barr, Y. Harchol, and D. Hay, “OpenBox: A software-
defined framework for developing, deploying, and managing
network functions,” in ACM SIGCOMM Computer Communication
Review. ACM, 2016, pp. 511–524.

[19] W. Ma, J. Beltran, Z. Pan, D. Pan, and N. Pissinou, “SDN-based
traffic aware placement of nfv middleboxes,” IEEE Transactions on
Network and Service Management, vol. 14, no. 3, pp. 528–542, 2017.

[20] H. Mekky, F. Hao, S. Mukherjee, T. Lakshman, and Z.-L. Zhang,
“Network function virtualization enablement within SDN data
plane,” in IEEE Conference on Computer Communications (INFO-
COM 2017), IEEE. IEEE, 2017, pp. 1–9.

[21] H. Mekky, F. Hao, S. Mukherjee, Z.-L. Zhang, and T. Lakshman,
“Application-aware data plane processing in SDN,” in HotSDN.
ACM, 2014, pp. 13–18.

[22] Z. Liu, X. Wang, W. Pan, B. Yang, X. Hu, and J. Li, “Towards
efficient load distribution in big data cloud,” in IEEE ICNC, 2015,
pp. 117–122.

[23] H. Huang, P. Li, S. Guo, W. Liang, and K. Wang, “Near-optimal
deployment of service chains by exploiting correlations between
network functions,” IEEE Transactions on Cloud Computing, 2017.

[24] C. Guo, L. Yuan, D. Xiang, Y. Dang, R. Huang, D. Maltz, Z. Liu,
V. Wang, B. Pang, H. Chen et al., “Pingmesh: A large-scale system
for data center network latency measurement and analysis,” in
Proceedings of the 2015 ACM Conference on Special Interest Group on
Data Communication. ACM, 2015, pp. 139–152.

[25] P. Duan, Q. Li, Y. Jiang, and S.-T. Xia, “Toward latency-aware
dynamic middlebox scheduling,” in 24th International Conference
on Computer Communication and Networks (ICCCN). IEEE, 2015,
pp. 1–8.

[26] R. Mittal, N. Dukkipati, E. Blem, H. Wassel, M. Ghobadi, A. Vah-
dat, Y. Wang, D. Wetherall, D. Zats et al., “Timely: Rtt-based con-
gestion control for the datacenter,” in ACM SIGCOMM Computer
Communication Review, vol. 45, no. 4. ACM, 2015, pp. 537–550.

[27] M. Handley, C. Raiciu, A. Agache, A. Voinescu, A. W. Moore,
G. Antichi, and M. Wójcik, “Re-architecting datacenter networks
and stacks for low latency and high performance,” in Proceedings
of the Conference of the ACM Special Interest Group on Data Commu-
nication. ACM, 2017, pp. 29–42.

[28] S. Liu, H. Xu, L. Liu, W. Bai, K. Chen, and Z. Cai, “Repnet:
Cutting latency with flow replication in data center networks,”
IEEE Transactions on Services Computing, 2018.

[29] S. Ayoubi, S. Sebbah, and C. Assi, “A cut-and-solve based ap-
proach for the VNF assignment problem,” IEEE Transactions on
Cloud Computing, 2017.

[30] S. Woo, J. Sherry, S. Han, S. Moon, S. Ratnasamy, and S. Shenker,
“Elastic scaling of stateful network functions,” in 15th USENIX
Symposium on Networked Systems Design and Implementation
(NSDI’18). USENIX Association, 2018.

[31] H. Kellerer, U. Pferschy, and D. Pisinger, Knapsack problems.
Springer Verlag, 2004.

[32] D. Alistarh, J. Kopinsky, J. Li, and N. Shavit, “The spraylist: A
scalable relaxed priority queue,” in ACM SIGPLAN Notices, vol. 50,
no. 8. ACM, 2015, pp. 11–20.

[33] M. L. Fredman and R. E. Tarjan, “Fibonacci heaps and their uses
in improved network optimization algorithms,” Journal of the ACM
(JACM), vol. 34, no. 3, pp. 596–615, 1987.

[34] N. L. Van Adrichem, C. Doerr, and F. A. Kuipers, “OpenNetMon:
Network monitoring in openflow software-defined networks,” in
2014 IEEE Network Operations and Management Symposium (NOMS).
IEEE, 2014, pp. 1–8.

[35] P. Phaal, S. Panchen, and N. McKee, “Inmon corporations sFlow: A
method for monitoring traffic in switched and routed networks,”
RFC 3176, Tech. Rep., 2001.

[36] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Pa-
tel, B. Prabhakar, S. Sengupta, and M. Sridharan, “Data center
tcp (dctcp),” in ACM SIGCOMM computer communication review,
vol. 40, no. 4. ACM, 2010, pp. 63–74.

[37] D. Whitaker, “Branch and bound,” Wiley StatsRef: Statistics Refer-
ence Online, 2006.

[38] L. E. Li, V. Liaghat, H. Zhao, M. Hajiaghayi, D. Li, G. Wilfong,
Y. R. Yang, and C. Guo, “PACE: Policy-aware application cloud
embedding,” in Proceedings of 32nd IEEE INFOCOM. IEEE, 2013,
pp. 638–646.

[39] L. Cui and F. P. Tso, “Joint virtual machine and network policy
consolidation in cloud data centers,” in IEEE 4th International
Conference on Cloud Networking (CloudNet). IEEE, 2015, pp. 153–
158.

13

[40] V. Sekar, S. Ratnasamy, M. K. Reiter, N. Egi, and G. Shi, “The
middlebox manifesto: enabling innovation in middlebox deploy-
ment,” in Proceedings of the 10th ACM Workshop on Hot Topics in
Networks. ACM, 2011, p. 21.

[41] H. Huang, S. Guo, J. Wu, and J. Li, “Service chaining for hybrid
network function,” IEEE Transactions on Cloud Computing, no. 1,
pp. 1–1, 2017.

[42] L. Popa, M. Yu, S. Y. Ko, S. Ratnasamy, and I. Stoica, “CloudPolice:
taking access control out of the network,” in ACM SIGCOMM
Workshop on Hot Topics in Networks, 2010.

[43] M. Moshref, M. Yu, A. B. Sharma, and R. Govindan, “Scalable rule
management for data centers.” in NSDI, vol. 13, 2013, pp. 157–170.

[44] L. Cui, R. Cziva, F. P. Tso, and D. P. Pezaros, “Synergistic policy
and virtual machine consolidation in cloud data centers,” in The
35th Annual IEEE International Conference on Computer Communica-
tions, IEEE INFOCOM 2016. IEEE, 2016, pp. 1–9.

[45] L. Cui, F. P. Tso, D. P. Pezaros, W. Jia, and W. Zhao, “PLAN: Joint
policy-and network-aware vm management for cloud data cen-
ters,” IEEE Transactions on Parallel and Distributed Systems, vol. 28,
no. 4, pp. 1163–1175, 2017.

[46] A. Gember, P. Prabhu, Z. Ghadiyali, and A. Akella, “Toward
software-defined middlebox networking,” in Proceedings of the 11th
ACM Workshop on Hot Topics in Networks. ACM, 2012, pp. 7–12.

[47] L. Avramov and M. Portolani, The Policy Driven Data Center with
ACI: Architecture, Concepts, and Methodology. Cisco Press, 2014.

[48] M. P. Grosvenor, M. Schwarzkopf, I. Gog, R. N. Watson, A. W.
Moore, S. Hand, and J. Crowcroft, “Queues don’t matter when
you can jump them!” in NSDI 2015.

[49] J. Perry, A. Ousterhout, H. Balakrishnan, D. Shah, and H. Fugal,
“Fastpass: A centralized zero-queue datacenter network,” ACM
SIGCOMM Computer Communication Review, vol. 44, no. 4, pp. 307–
318, 2015.

[50] K. Jang, J. Sherry, H. Ballani, and T. Moncaster, “Silo: predictable
message latency in the cloud,” ACM SIGCOMM Computer Commu-
nication Review, vol. 45, no. 4, pp. 435–448, 2015.

Lin Cui is currently with the Department of Com-
puter Science at Jinan University, Guangzhou,
China. He received the Ph.D. degree from City
University of Hong Kong in 2013. He has broad
interests in networking systems, with focuses on
the following topics: cloud data center resource
management, data center networking, software
defined networking (SDN), virtualization and so
on.

Fun Po Tso received his BEng, MPhil and PhD
degrees from City University of Hong Kong in
2006, 2007 and 2011 respectively. He is cur-
rently lecturer in the Department of Computer
Science at the Loughborough University. Prior
to joining Loughborough, he worked as SICSA
Next Generation Internet Fellow at the School
of Computing Science, University of Glasgow
during 2011-2014 and lecturer in Liverpool John
Moores University during 2014-2017. He has
published more than 20 research articles in top

venues and outlets. His research interests include: network policy man-
agement, network measurement and optimisation, cloud data centre
resource management, data centre networking, software defined net-
working (SDN), distributed systems as well as mobile computing and
system.

Song Guo is a Full Professor at Department of
Computing, The Hong Kong Polytechnic Univer-
sity. He received his Ph.D. in computer science
from University of Ottawa and was a professor
with the University of Aizu from 2007 to 2016.
His research interests are mainly in the areas
of big data, cloud computing and networking,
and distributed systems with over 400 papers
published in major conferences and journals. His
work was recognized by the 2016 Annual Best
of Computing: Notable Books and Articles in

Computing in ACM Computing Reviews. He is the recipient of the 2017
IEEE Systems Journal Annual Best Paper Award and other five Best
Paper Awards from IEEE/ACM conferences.

Weijia Jia is currently a chair Professor at Uni-
versity of Macaua. He is leading currently sev-
eral large projects on next-generation Internet
of Things, environmental sensing, smart cities
and cyberspace sensing and associations etc.
He received BSc and MSc from Center South
University, China in 82 and 84 and PhD from
Polytechnic Faculty of Mons, Belgium in 1993
respectively. He worked in German National Re-
search Center for Information Science (GMD)
from 93 to 95 as a research fellow. From 95 to

13, he has worked in City University of Hong Kong as a full professor.
From 14 to 17, he has worked as a Chair Professor in Shanghai
Jiaotong University. He has published over 400 papers in various IEEE
Transactions and prestige international conference proceedings.

Kaimin Wei received the PhD degree in com-
puter science and technology from Beihang Uni-
versity, Beijing, China, in 2014. He is currently
an associate research professor at the School
of Information Technology, Jinan University. His
research interests focus on Delay/Disruption Tol-
erant Networks, Mobile Social Networks, and
Cloud Computing.

Wei Zhao is currently with American University
of Sharjah. He served as the Rector (President)
and Chair Professor at Macao University from
2008 to 2018. Before joining the University of
Macau, he served as the dean of the School
of Science, Rensselaer Polytechnic Institute. Be-
tween 2005 and 2007, he served as the direc-
tor for the Division of Computer and Network
Systems in the US National Science Founda-
tion when he was on leave from Texas A&M
University, where he served as senior associate

vice president for research and professor of computer science. As an
elected IEEE fellow, he has made significant contributions in distributed
computing, real-time systems, computer networks, cyber security, and
cyber-physical systems.

