
Implementing Scalable, Network-Aware Virtual

Machine Migration for Cloud Data Centers

Fung Po Tso∗, Gregg Hamilton∗, Konstantinos Oikonomou†, and Dimitrios P. Pezaros∗

∗School of Computing Science, University of Glasgow, G12 8QQ, UK
†Department of Informatics, Ionian University, 49100 Corfu, Greece

Email: {posco.tso, dimitrios.pezaros}@glasgow.ac.uk, okon@ionio.gr, g.hamilton.3@research.gla.ac.uk

Abstract—Virtualization has been key to the success of
Cloud Computing through the on-demand allocation of shared
hardware resources to Virtual Machines (VM)s. However, the
network-agnostic placement of VMs over the underlying network
topology can itself be a factor of performance degradation by
causing congestion at the core layers of the infrastructure where
bandwidth is heavily oversubscribed. In this paper, we design and
implement S-CORE, a scalable live VM migration scheme to dy-
namically reallocate VMs to servers while minimizing the overall
communication footprint of active traffic flows. We evaluate S-
CORE over diverse aggregate load and coordination policies. Our
results show that it can achieve up to a 87% communication
cost reduction with a limited number of migration rounds,
and can be easily accommodated within commodity hardware
and hypervisor architectures. The associated memory, CPU, and
network overhead are also minimum under typical Cloud Data
Center workloads.

Index Terms—Cloud Computing, Data Center, Distributed
Virtual Machine Migration, Network Management.

I. INTRODUCTION

Resource virtualization has facilitated the emergence of

elastic computing environments where ICT infrastructure can

be outsourced and expanded on-demand, saving clients from

large up-front and maintenance costs. At the same time, for

Cloud computing providers, the significant capital outlay for

setting up a Cloud site makes return-on-investment through

maximization of resource usage efficiency crucial [1]. Consid-

erable research effort has recently focused on the underlying

Data Center (DC) infrastructure design [2][3] as well as into

system resource allocation mechanisms [4].

A number of studies have concentrated on the efficient

placement, consolidation and migration of Virtual Machines

(VMs) to maximize server-side resources, such as CPU,

RAM and network I/O [5][6]. At the same time, it has

been repeatedly reported that virtualization itself can create

network congestion which evolves as the major performance

bottleneck for DCs [2][7]. The use of server-side metrics

alone, takes no account of the resulting traffic dynamics in

an already over-subscribed network [8][9]. Network-aware

VM placement studies to date typically only consider the

problem of initial placement, ignoring subsequent changes in

traffic demands [4][10]. The limited body of work that has

addressed network-aware VM migration, has either relied on

complex centrally-controlled optimization algorithms [11][12],

or penalized bandwidth in pursuit of fault tolerance without

considering the network cost of migration [13].

Experiments over Amazon’s EC2 revealed that a marginal

100 msec additional latency resulted in 1% drop in sales, while

Google’s revenues dropped by 20% due to a 500 msec increase

in search response time [14]. It is therefore becoming apparent

that any resource virtualization and live VM migration scheme

will need to incorporate mechanisms to reduce the resulting

network cost, while optimising server resource usage.

In this paper, we present the implementation and exper-

imental evaluation of S-CORE, a scalable VM migration

scheme that minimizes the overall communication cost of the

DC topology while adhering to server-side resource capacity

limits. By assigning distinct link weights at the different

layers of the DC infrastructure and taking into account the

amount of data traffic routed over these links, a function of the

network-wide communication cost is defined that can then be

minimized in terms of the contributing pairwise aggregate VM

traffic load. S-CORE adopts a distributed approach based on

information available locally at each VM to inform migration

decisions, rather than using in-network or global statistics, a

property that makes it scalable and realistically implementable

over large-scale DC infrastructures. It iteratively localizes

pairwise VM traffic to lower-layer links where bandwidth

is not as over-subscribed as it is in the core, and where

interconnection switches are cheaper to upgrade [15]. To the

best of our knowledge, S-CORE is the first scheme to incor-

porate a distributed migration solution with multiple distinct

policies. Our implementation is an easy plug-in module to

the Xen [16] hypervisor and is completely transparent and

backwards compatible to the hosted VMs. Our results show

that S-CORE can significantly reduce traffic over the high-cost

links at the core of the topology that are shown to experience

congestion, even when lower communication layers are under-

utilized [7][8]. S-CORE can achieve an overall communication

cost reduction of as high as 87% (i.e., only deviating by 13%

from optimal allocation), as this is approximated by central-

ized algorithms that assume global traffic knowledge but are

prohibitively expensive to implement in practice. In addition,

our implementation shows that S-CORE is light-weight and

inexpensive to operate as part of the Xen hypervisor. With

typical DC traffic loads, S-CORE only incurs a 0.01% CPU

utilization and 187KB memory footprint.

The remainder of this paper is structured as follows. Sec-

tion II presents S-CORE and its token policies. Section III

describes the design and implementation of S-CORE within the

mailto:posco.tso@glasgow.ac.uk; g.hamilton.3@research.gla.ac.uk; okon@ionio.gr; dimitrios.pezaros@glasgow.ac.uk
https://www.researchgate.net/publication/221654095_Practical_guide_to_controlled_experiments_on_the_web_Listen_to_your_customers_not_to_the_hippo?el=1_x_8&enrichId=rgreq-1fe7e2c8-f836-47d5-8471-7e56fc704212&enrichSource=Y292ZXJQYWdlOzI2MTQzNjAwMjtBUzoyMTgwNzcxMzc1MTA0MDFAMTQyOTAwNTA0OTU5Mw==
https://www.researchgate.net/publication/224257346_Improving_Performance_and_Availability_of_Services_Hosted_on_IaaS_Clouds_with_Structural_Constraint-Aware_Virtual_Machine_Placement?el=1_x_8&enrichId=rgreq-1fe7e2c8-f836-47d5-8471-7e56fc704212&enrichSource=Y292ZXJQYWdlOzI2MTQzNjAwMjtBUzoyMTgwNzcxMzc1MTA0MDFAMTQyOTAwNTA0OTU5Mw==
https://www.researchgate.net/publication/220195289_The_Cost_of_a_Cloud_Research_Problems_in_Data_Center_Networks?el=1_x_8&enrichId=rgreq-1fe7e2c8-f836-47d5-8471-7e56fc704212&enrichSource=Y292ZXJQYWdlOzI2MTQzNjAwMjtBUzoyMTgwNzcxMzc1MTA0MDFAMTQyOTAwNTA0OTU5Mw==
https://www.researchgate.net/publication/224136905_Improving_the_scalability_of_data_center_networks_with_traffic-aware_virtual_machine_placement_In_Proceedings_of_IEEE_INFOCOM?el=1_x_8&enrichId=rgreq-1fe7e2c8-f836-47d5-8471-7e56fc704212&enrichSource=Y292ZXJQYWdlOzI2MTQzNjAwMjtBUzoyMTgwNzcxMzc1MTA0MDFAMTQyOTAwNTA0OTU5Mw==
https://www.researchgate.net/publication/221164412_A_scalable_commodity_data_center_network_architecture?el=1_x_8&enrichId=rgreq-1fe7e2c8-f836-47d5-8471-7e56fc704212&enrichSource=Y292ZXJQYWdlOzI2MTQzNjAwMjtBUzoyMTgwNzcxMzc1MTA0MDFAMTQyOTAwNTA0OTU5Mw==
https://www.researchgate.net/publication/221164260_Improving_Datacenter_Performance_and_Robustness_with_Multipath_TCP?el=1_x_8&enrichId=rgreq-1fe7e2c8-f836-47d5-8471-7e56fc704212&enrichSource=Y292ZXJQYWdlOzI2MTQzNjAwMjtBUzoyMTgwNzcxMzc1MTA0MDFAMTQyOTAwNTA0OTU5Mw==
https://www.researchgate.net/publication/221461239_pMapper_Power_and_Migration_Cost_Aware_Application_Placement_in_Virtualized_Systems?el=1_x_8&enrichId=rgreq-1fe7e2c8-f836-47d5-8471-7e56fc704212&enrichSource=Y292ZXJQYWdlOzI2MTQzNjAwMjtBUzoyMTgwNzcxMzc1MTA0MDFAMTQyOTAwNTA0OTU5Mw==
https://www.researchgate.net/publication/254464741_Surviving_Failures_in_Bandwidth-Constrained_Datacenters?el=1_x_8&enrichId=rgreq-1fe7e2c8-f836-47d5-8471-7e56fc704212&enrichSource=Y292ZXJQYWdlOzI2MTQzNjAwMjtBUzoyMTgwNzcxMzc1MTA0MDFAMTQyOTAwNTA0OTU5Mw==
https://www.researchgate.net/publication/220269636_CloudCmp_Comparing_Public_Cloud_Providers?el=1_x_8&enrichId=rgreq-1fe7e2c8-f836-47d5-8471-7e56fc704212&enrichSource=Y292ZXJQYWdlOzI2MTQzNjAwMjtBUzoyMTgwNzcxMzc1MTA0MDFAMTQyOTAwNTA0OTU5Mw==
https://www.researchgate.net/publication/221611932_Network_traffic_characteristics_of_data_centers_in_the_wild?el=1_x_8&enrichId=rgreq-1fe7e2c8-f836-47d5-8471-7e56fc704212&enrichSource=Y292ZXJQYWdlOzI2MTQzNjAwMjtBUzoyMTgwNzcxMzc1MTA0MDFAMTQyOTAwNTA0OTU5Mw==
https://www.researchgate.net/publication/254038533_A_Stable_Network-Aware_VM_Placement_for_Cloud_Systems?el=1_x_8&enrichId=rgreq-1fe7e2c8-f836-47d5-8471-7e56fc704212&enrichSource=Y292ZXJQYWdlOzI2MTQzNjAwMjtBUzoyMTgwNzcxMzc1MTA0MDFAMTQyOTAwNTA0OTU5Mw==


2

Xen hypervisor. Section IV presents an extensive evaluation

of S-CORE under diverse migration policies and demonstrates

the significant performance gains achieved while keeping

overhead low. Section V discusses related work, and Section

VI concludes the paper.

II. SYSTEM DEFINITION AND DESCRIPTION

A typical reference network architecture for DCs is a lay-

ered tree with multiple redundant links [17][2][3]. We defined

network links that connect ToR and servers as 1-level links,

those between ToR and aggregation switches as 2-level links,

etc.

TABLE I: List of Notations.

Notation Description

V Set of all VMs in the DC
Vu Set of VMs that communicate with VM u

A Allocation of VMs to servers
Aopt Optimal allocation
Au→x̂ New allocation after migration u → x̂

ℓA(u, v) Communication level between VMs u and VM v

ci Link weight for a i-level link
λ(u, v) Traffic load between VM u and VM v per time unit

CA(u) Communication cost for VM u for allocation A

CA Overall communication cost for allocation A
u → x̂ Migration of VM u to a new server x̂

cm Migration cost

Moving up the network hierarchy, operators face steep tech-

nical and financial challenges in sustaining high bandwidth,

and the over-subscription ratio increases sharply along the

path. When a packet enters the network, it incurs a com-

munication cost (of consuming network bandwidth), which

increases when moving up the hierarchy, i.e., c1 < c2 <

c3 < c4). We formalize the problem of communication cost

reduction and the concepts of allocation, communication level,

and link weights, with important notations listed in Table I.

The overall communication cost for all VM communications

over the DC is defined as the aggregate traffic, λ(u, v), for

all communicating VM pairs and all communication levels,

ℓA(u, v), multiplied by their corresponding link weight ci.

CA =
∑

∀u∈V

∑

∀v∈Vu

λ(u, v)

ℓA(u,v)
∑

i=1

ci. (1)

Let Aopt denote an optimal allocation, such that CAopt ≤
CA, for any possible A. It is shown in [18] that this

problem is of high complexity and specifically NP-complete,

therefore there exists no possible polynomial time solution

for centralized optimization. Even if there was however, the

centralized approach would require global knowledge of traffic

dynamics which is prohibitively expensive to obtain in a highly

dynamic environment like a DC.

This calls for a scalable and efficient alternative, and thus we

have formulated the following S-CORE distributed migration

policy for virtual machines: A VM u migrates from a server

x to another server x̂, provided that Equation 2 is satisfied,

i.e., given the observed amount of aggregate traffic, a VM u

individually tests the candidate servers (for new placement)

and migrates only when the benefit outweighs the migration

cost cm. We refer interested readers to [18] in which we have

formulated and proved the S-CORE scheme.

2
∑

∀z∈Vu

λ(z, u)





ℓA(z,u)
∑

i=1

ci −

ℓAu→x̂(z,u)
∑

i=1

ci



 > cm, (2)

Token Policies: As S-CORE operates in a distributed man-

ner, VMs must know when they are allowed to migrate.

We achieve this through the passing of a token containing

information for all VMs that consists of a VM ID and an

associated communication level value.

We have defined four token policies:

• Round-robin token policy passes the token among VMs

based on their IDs in an ascending order, assuming each

VM has a unique and totally ordered identifier. The basic

round-robin policy may not be efficient in all cases, such

as when the token is passed on to a VM that will not

migrate, wasting one iteration.

• Centralised global token policy builds and distributes the

token based on the highest pairwise communication cost

reduction. Such a policy requires computing and sorting

communication cost centrally and is thus not scalable.

• Distributed token policy prioritizes VMs for whom net-

work communication passes through the highest-layers in

the network. Links are most costly at this level and it is

therefore reasonable to assume that migration is likely to

take place.

• Load-aware is a variant of the distributed token policy,

which considers the aggregate network load (incoming

and outgoing) for each VM. VMs at the same communi-

cation level, but with higher aggregate load, receive the

token first.

Migration decision is a task which requires monitoring

aggregate traffic for a certain period of time to capture a

reliable traffic demand. Token passing is therefore a relatively

infrequent activity, operating at an interval from a few seconds

up to several hours.

III. DESIGN AND IMPLEMENTATION

In this section we discuss a a real-world implementation of

the S-CORE migration system, highlighting the rationale as

well as the operational and design details of the individual

components.

A. Implementation Environment

Our main development platform is Xen [16] with Ubuntu

12.04 as dom0 (domain zero, the initial domain started by

Xen on boot). The management interface we used with Xen

is xm [19], which is written in Python and communicates

with Xen to perform tasks such as VM instantiation, migration

https://www.researchgate.net/publication/221164412_A_scalable_commodity_data_center_network_architecture?el=1_x_8&enrichId=rgreq-1fe7e2c8-f836-47d5-8471-7e56fc704212&enrichSource=Y292ZXJQYWdlOzI2MTQzNjAwMjtBUzoyMTgwNzcxMzc1MTA0MDFAMTQyOTAwNTA0OTU5Mw==


3

dom0

Open vSwitch

domU domU domUdomU

bridges

Xen

Flow Monitoring

Token Passing

Migration 
Decision

S-CORE

Fig. 1: S-CORE Architecture

and probing for details of individual VMs. To allow for easy

communication with the functions of xm required for S-CORE,

and given the distributed and periodic nature of the algorithm

where a hypervisor must make a migration decision only when

a co-located VM receives the token, we have implemented S-

CORE in Python.

In order to enable network communication between co-

located VMs on a server, as well as between VMs and the

outside world, a network bridge is created in dom0 through

which the network traffic to and from all VMs on a physi-

cal host passes. While the basic Linux bridge utilities offer

limited capabilities and do not allow access to individual

flow statistics, Open vSwitch [20] can be used as a drop-in

replacement with bridge compatibility enabled. Open vSwitch

provides flow-level access and manipulation to enable flow-

level monitoring at the hypervisor level for all local VMs,

rather than on a per VM basis.

B. VM vs Hypervisor

While conceptually S-CORE relies on VMs passing the

token amongst themselves and making their own migration

decisions, in practice this is unsuitable for a number of reasons.

The operational paradigm in system virtualization is that the

hosts being virtualized should not be aware that they are in fact

running within a Virtual Machine. Consequently, the presence

of a hypervisor should also be transparent, not requiring VMs

to communicate directly with the underlying hypervisor.

This eliminates the possibility of a VM itself deciding

to migrate, since migration is a facility provided by the

hypervisor. Enabling such an ability would violate the VM

transparency and would require it to directly interact with

the hypervisor to allow migration. In S-CORE, we decided

to implement our solution within dom0 of the Xen hypervisor

itself. The modular architecture of S-CORE is shown in Fig. 1.

The benefit of having such a modular architecture is not only

to keep transparency intact but also to make the system easily

upgradable.

C. Flow Monitoring

In order to enable an accurate measure of the aggregate

throughput between communicating VMs some form of flow

statistics gathering is required. However, Open vSwitch only

maintains flows for as long as they are active and discards

any inactive flows after 5 seconds, hindering the accumulation

of any long-term history. To overcome this limitation, we

have implemented our own flow table for storing flow-level

statistics. For the purposes of S-CORE, the flow table must

support the following operations: Fast addition of new flows;

Updating existing flows; Retrieval of a subset of flows, by IP

address; Access to the number of bytes transmitted per flow;

Access to flow duration, for calculation of throughput.

The flow table will be periodically updated through polling

Open vSwitch for datapath statistics allowing for the storage

of flows for as long as it is required. Flows will be stored from

when they start up till a migration decision is made for a VM.

As the most frequent operation on S-CORE’s flow table is the

addition of new flows or the updating of existing flow counters,

we require the ability to easily add new flows, and to also

perform quick lookup and update of existing flows. To achieve

this, we use a hash table structure to store flow data. Each entry

stores the MAC address associated with a particular source IP

and a hash table for quick lookup of the destination flow data,

using the source IP address as a key. The destination hash table

is keyed by destination IP, and stores protocol type, source

and destination ports, the number of bytes transmitted in that

flow, and a timestamp of when the flow was started. Open

vSwitch identifies datapaths as a flow in a single direction, so

bidirectional flows are composed of two individual datapaths.

To address this, two data structures are used, with the second

storing destination IP addresses as the main key.

D. Token Passing

S-CORE is a distributed migration system, requiring the use

of a token passed between VMs in order to allow the localized

migration decisions to take place. When a token addressed to

a VM is received, the concerned VM needs to evaluate the

overall communication cost between itself and all neighbors it

communicates with. It must then evaluate if it can achieve a

lower overall communication cost by migrating to a different

physical host. If a lower communication cost is achievable and

the destination host has available resources, then migration

should take place. We have used the IPv4 address of a VM

as the 32-bit VM ID carried in each token. As all VMs must

have a unique IP address, this provides a unique identifier

simplifying the token passing process, as the token can be

sent directly to the IP address of the next VM.

To efficiently pack the token for network transmission, it is

stored and transmitted as a block of 32-bit unsigned integers.

Similarly, for the distributed token policy that requires an

additional highest communication level entry, we specify an

8-bit value that follows the VM ID.

Since our implementation stores IP addresses as VM IDs

and passes the token to each IP address in turn, a question

arises: How does the dom0 acquire the token? Instead of

running a token listening server on each VM, a token listening

server runs on a known port in dom0 of each hypervisor. For

the token server to receive the token, a NAT redirect is installed

in dom0’s iptables, redirecting messages for a particular port

to dom0 itself. When dom0 holds the token for a VM it hosts,

it is then able to conduct the migration decision process on

behalf of the VM, before forwarding the token along.



4

E. Xen Wrapper

It is possible to retrieve the MAC addresses of VMs using

the xm tools as the xm management interface for Xen (or

rather, xend, the control daemon that xm communicates with)

does not store information about the IP addresses of each

running VM. The xm toolkit is itself written in Python, which

allowed us to create our own Python wrappers around most of

the functions concerned with listing VMs, retrieving network

details of a VM, and migrating a VM.

Given that IP addresses are passed in the token, and xm

can retrieve the MAC addresses of individual VMs, how can

these be mapped to each other to identify a particular VM that

should be migrated? As mentioned in Section III-C, the flow

table also stores a MAC address with each IP address. This

allows dom0 to do a lookup for the MAC address associated

with the IP address in the token it has received, and then make

calls to xm to find the particular VM that matches that MAC

address, and perform a migration, if necessary.

F. Migration Decision

1) Aggregate Throughput Calculation: When dom0 re-

ceives the token for a co-located VM, the first step is to

calculate the aggregate load between that VM and all the

neighbors it communicates with. This is achieved by looking

up S-CORE’s flow table for the source and destination flows

associated with that IP address, and calculating the total

number of bytes transmitted. As each flow stores a timestamp

of when it was started, these timestamps can be used to deduce

the length of time for which the flow statistics have been

gathered since last being cleared, allowing calculation of the

aggregate throughput in the form of bytes-per-second.

2) Location Identification: Once the aggregate throughput

to each communicating neighbor has been calculated, the

communication cost must be evaluated. In real terms, the

communication cost can be derived from the number of hops

between a VM and any neighbor that it is communicating

with. This could be achieved by a network diagnostics tool

such as, e.g., traceroute, but layer 2 switches would not show

up as hops in this case. Another alternative would be a lookup

service listing the cost for any VM to communicate with

another. However, VMs carry their IP addresses when they

migrate, which renders this method unusable in a Data Center

with a dynamically changing VM allocation.

On the contrary, the physical servers and the hypervisors

running on them, do not move around. This makes a reliable

lookup service possible, and is the option chosen for S-

CORE. As we store a flow table of the IP addresses each VM

communicates with, we can probe neighboring VMs to find

out the IP address of their dom0. Similar to the token passing

method, we can send a custom location request packet to the IP

address of each communicating VM. A NAT redirect in dom0

of each hypervisor will then capture this packet and pass it to

dom0, which can send a location response containing dom0’s

static address back to the VM.

With that information, the dom0 currently holding the token

can make a lookup into a precomputed location cost mapping

with its own IP address and the IP address of each underlying

dom0 of communicating VMs. The location cost for each VM

is then combined with each aggregate throughput value to

produce an overall communication cost for each neighboring

VM, as well as a total cost for its current allocation.

3) Migration Location Identification: Since we now have

the IP addresses of each hypervisor, after probing for the

communication cost, we can order neighboring VMs from

highest to lowest communication levels and probe each server

to see if it is able to host the current VM. A capacity request

packet is sent to the hypervisor of the neighboring VM with the

highest communication cost, which responds with a capacity

response packet, detailing how many more VMs it is able to

host, and the amount of RAM it has available (to account for

VMs with heterogeneous RAM requirements).

If the hypervisor has the capacity to host the additional VM,

the dom0 holding the token will then calculate the overall

communication cost for the VM if it were to migrate to that

hypervisor; it will migrate there if the communication cost is

reduced, and not migrate otherwise. If the hypervisor hosting

the neighboring VM with the highest communication cost does

not have the capacity to host the VM for which migration

has been instructed, the hypervisor of the VM with the next-

highest communication cost will be subsequently considered.

This operation is repeated until a hypervisor with available

capacity is found, the overall communication cost of moving

to that hypervisor is reduced, and a migration is conducted. If

no suitable hypervisor is found, the algorithm terminates and

the token is passed on to the next host, i.e., the next hypervisor.

IV. EVALUATION

We have implemented S-CORE over experimental testbed

and simulated environments in order to evaluate its operational

feasibility and overhead, and the algorithm’s scale properties,

respectively. This section discusses the results of an extensive

evaluation and highlights the communication cost reduction

achieved, as well as the scheme’s instrumentation and system

footprint.

A. Simulation Setup

We have simulated S-CORE’s communication cost reduc-

tion with the different token policies over a layered DC

topology, using the ns-3 network simulator [21].

Simulation Environment: The simulated topology is com-

prised of 2560 hosts (128 ToR switches, 20 hosts per rack)

which can sufficiently capture hierarchical link oversubscrip-

tion ratio at aggregate and core links found in the DCs [2].

In order to model a typical DC server environment, each host

can accommodate at most 16 VMs assuming 2 VMs per core,

each occupying 1GB of RAM. Increasing a VM’s resource

requirements is equivalent to combining, for example, two or

more VMs’ resources into one. We set c1 = e0, c2 = e1,

c3 = e3 and c4 = e5 for each link cost. VM migration carries

its own cost in terms of network bandwidth for moving a VM’s

memory contents and VM downtime. We set our migration

https://www.researchgate.net/publication/234828564_VL2_a_scalable_and_flexible_data_center_network_SIGCOMM_Comput_Commun_Rev?el=1_x_8&enrichId=rgreq-1fe7e2c8-f836-47d5-8471-7e56fc704212&enrichSource=Y292ZXJQYWdlOzI2MTQzNjAwMjtBUzoyMTgwNzcxMzc1MTA0MDFAMTQyOTAwNTA0OTU5Mw==


5

From ToR Switch

T
o 

T
oR

 S
w

itc
h

 

 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(a)

0 100 200 300 400
1

1.2

1.4

1.6

1.8

2

2.2

Time(s)

R
a
ti
o
o
f
C
o
m
m
u
n
ic
a
ti
o
n
C
o
s
t

Round Robin
Global

Distributed
Load Aware

(b)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

Normalized Migration Cost (c
m

)

R
at

io
 o

f C
om

m
. C

os
t R

ed
uc

tio
n

(c)

From ToR Switch

T
o 

T
oR

 S
w

itc
h

 

 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(d)

Fig. 2: (a) Normalized traffic matrix between Top-of-Rack switches; (b) Communication cost reduction with dynamic DC traffic flows; (c)
Ratio of communication cost reduction under various migration cost threshold settings with the distributed token policy. (d) Normalized
traffic matrix between Top-of-Rack switches after 5th iteration;

overhead cost cm to zero to allow for a fair comparison among

the centralized approach and S-CORE.

DC Traffic Pattern: We have also built a DC traffic generator

to test S-CORE under realistic DC load, as these have been re-

ported in a number of DC measurement studies [22][2][23][7].

The sample of a 10s Traffic Matrix (TM) of all ToR switches

is given in Fig. 2a, which exhibits identical TM properties

with those unveiled in [23]. As a benchmark, the centralized

optimal values are approximated using the Genetic Algorithm

(GA).

B. Simulation Results

The results in Fig. 2b show that, despite the dynamic

instantiation of new traffic flows (i.e., small spikes along

the curves), S-CORE can still adapt and converge quickly

to approximation of optimal network-wide VM allocations

calculated by the genetic algorithm, which is computed using

the TM given in Fig. 2a for all scenarios. We note that this

optimal approximation is only used for reference here and

should vary over time due to fluctuating traffic dynamics. In

all four scenarios, the global token policy constantly exhibits

best performance in terms of communication cost reduction

speed and proximity to the optimal cost. However, it requires

global knowledge of the traffic dynamics and can therefore

be prohibitively expensive to implement in practice, even

under a distributed migration algorithm. The basic round-robin

policy exhibits the slowest cost reduction and largest deviation

from the approximate optimal amongst all four token passing

policies. The less expensive distributed and load-aware token

passing policies produce highly comparable performance to

the global one. All token policies converge and stabilize

when the VM distribution considerably reduces the overall

communication cost.

To reflect the fact that cm is usually non-zero due to VM

migration overhead, we ran simulations with different cm
threshold values. Fig.2c shows that if we increase cm to 10%

of overall communication cost, a pronounced communication

cost reduction can still be seen. The ratio communication cost

reduction plunge sharply if we further increase cm to 20% and

more. This phenomenon demonstrates that S-CORE will work

well by setting reasonable cm accordingly. Fig. 2d depicts that

after VMs migrate, the number of ToR hotspots is significantly

reduced. Even though there are still ToR hotspots, these ToRs

are in close physical proximity, which means that inter-ToR

traffic flows remain within the lower levels of the topology

hierarchy. An obvious advantage of the locality property of

S-CORE is that these idle servers can be powered down to

reduce the energy consumption of the DC, addressing the aims

of studies on partial shutdown of servers or network elements

[6][25].

VM stability is crucial for dynamic VM migration al-

gorithms as unstable VM migrations (i.e., oscillations) can

themselves potentially have a big impact on the network and

servers. Whilst no dynamic algorithm can completely elimi-

nate the possibility of VM oscillations, we argue that S-CORE

can minimize short-term oscillations for two reasons. First, S-

CORE uses the average rate of data exchanged between VM

pairs over a certain time window, which can be set suitably

long to capture the dynamism of the environment while not

responding to instantaneous traffic bursts. Second, VMs do

not migrate arbitrarily nor do they measure individual flow

arrivals and completion. Rather, they only consider migration

periodically, when they receive the migration token, and their

computation is based on aggregate traffic load over that period.

Therefore, the short-term effects of sudden arrivals of mice

flows are canceled out when averaged over one iteration of

the algorithm.

C. Testbed Setup

We have used Intel’s P4 3GHz servers with 2GB RAM

running Xen hypervisor ver. 4.1 with Ubuntu server 12.04 as

dom0. VMs are of ubuntu 10.04 with 196MB RAM allocated.

In the experiments, initially we started two VMs on each

server. Each VM hosts a HTTP server as well as an iperf

server and client. We have also set-up a Network File System

(NFS) server, since live migration requires VM images to

reside on shared storage through which only transferring of

memory state is needed while keeping the actual file system

intact.

D. Module Evaluation

Given that S-CORE modules run within the hypervisor

rather than in the VMs themselves, it is imperative that S-

CORE can suitably monitor and perform migration decisions

for all the VMs a hypervisor hosts while consuming minimum



6

10
0

10
2

10
4

10
60

200

400

600

800

No. of Flows

M
em

or
y 

U
sa

ge
 (

M
B

)

 

 

Type 1 − 1 src, 1 dst
Type 2 − 1 src, 1000 dst

(a)

10
0

10
2

10
4

10
6

0

2

4

6

8

10

No. of Flows

T
im

e 
(s

)

 

 

Add − Type 1

Lookup − Type 1

Delete − Type 1

Add − Type 2

Lookup − Type 2

Delete − Type 2

(b)

10
0

10
1

10
2

10
3

10
4

10
5

0

5

10

15

20

25

30

35

No. of Flows

C
P

U
 U

sa
ge

 (
%

)

 

 

1s polling interval

2s polling interval

3s polling interval

4s polling interval

5s polling interval

(c)

Fig. 3: (a) Flow table memory usage; (b) Flow table operation times for up to 1 million unique flows; (c) CPU utilization when updating
flow table at varying polling intervals. All with log-scale at the x-axis.

hypervisor resources, thus leaving most resources available to

the actual VMs. While a number of studies have revealed that

server and network resources are mostly under-utilized, we

aim to stress-test our implementation to ensure that S-CORE

will not misbehave in worst case scenarios.

The first main module in S-CORE is the flow table, which

stores TCP and UDP flow data for the VMs running on the

hypervisor. It implements the requirements of adding new

flows, updating the number of bytes transferred for existing

flows, retrieving flow data, and clearing old flows. In order

to stress-test the resource consumption of adding flows to the

flow table, experiments were conducted where up to 1 million

flows were generated and added to the table, even though a

realistic typical load is 10 active flows per VM [22][2][23][7].

We defined two different sets of flows: The first set is 1 million

flows with all source IP addresses being unique (type 1). This

results in a new entry being created at the root of the flow

table for each flow. The other set is 1 million unique flows,

where groups of 1000 flows share the same source IP address

(type 2).

As shown in Fig. 3a, the size of the flow table scales sub-

linearly. With 10,000 flows, the flow table has a memory

footprint of only 4MB and 16MB for type 2 and type 1 flows,

respectively; with 100,000 flows, the corresponding footprint

is 46MB and 91MB. The substantially different memory usage

values are down to the structure of the flow table. As there will

be a limited number of VMs running on a server, the flow table

stores entries grouped by IP address at the root of the hash

table. When 1 million flows with unique source addresses are

used, this results in 1 million entries being added to the root

of the underlying data structure. However, when there are 1

million flows with 1000 overlapping source IP addresses, only

1000 entries are added to the root of the dictionary, while the

remaining flow data is added to the nested structures pointed

to by these 1000 entries.

However, a number of studies have reported that the total

number of concurrently active flows between VMs is much

more contained: in a production cluster of 1,500 servers, the

median number of active correspondents for a server are two

other servers within its rack and four servers outside the rack.

A busy server can talk to all servers in its rack or 1-10%

outside the rack [22]. At the same time, in a large-scale cloud

DC, the number of concurrent flows going in and out of a

machine is still almost never more than 100 [2]. With a more

realistic scenario where every virtual server concurrently sends

or receives 10 flows, with 100 in the worst case, we anticipate

that actual memory consumption of the flow table will be

between 24.75 KB - 186.47 KB for a hypervisor hosting 16

VMs.

To understand the time taken to perform the different

operations on the flow table, we have measured the time to add,

lookup and delete flows, summing the times over the number

of flows, for the same sets of flows. Fig. 3b shows the time to

perform various flow table operations with differing numbers

of flows in a single operation. From Fig. 3b we can see that

flow addition, lookup and deletion operations all require less

time on a flow table with a type 2 flow set. Nevertheless,

addition, lookup and deletion operations will not need more

than 100ms for a realistic DC production workload of 100

concurrent flows.

In order to evaluate the run-time impact on the processing

capability of the physical servers, we have measured the CPU

usage of the flow table in its normal background running

state. The experiment consisted of running a separate thread

maintaining the flow table which periodically updates itself

with new flow information from Open vSwitch, adding an

increasing number of new flows each time. This was varied

over update periods from 1 to 5 seconds. We have measured

the CPU clock time for adding each flow and calculated a

percentage of CPU utilization, as shown in Fig. 3c. It is evident

that the performance impact for adding up to 10,000 flows is

negligible for any polling interval accounting for less than 5%

CPU utilization. In the best case for 10,000 flows added or

updated each time, CPU utilization was only around 1% at a

polling rate of 5 seconds, while the worst case CPU utilization

was 3.6% at a polling rate of 1 second. For a more realistic

load of 1,000 flows, the best and worst cases are 0.002% and

0.01%, respectively.

E. Network Overhead

Similar to other DC management schemes, S-CORE will

inevitably impose control overhead on the network. An im-



7

110 120 130 140 150
0

0.02

0.04

0.06

0.08

MigratedBytes (MB)

P
D
F

(a)

0 0.1 0.20.30.40.50.60.70.80.9 1

3

4

5

6

7

8

9

10

11

Background Network Load

T
im

e
(s

)

(b)

0 0.10.20.30.40.50.60.70.80.9 1
10

15

20

25

30

35

40

Background Network Load

�

o
w
n
T
im

e
(m

s
)

(c)

Fig. 4: (a) PDF (probability density function) of migrated bytes per migration; (b) Virtual machine migration time and (b) down time under
various link load condition. Background Network Load is the ratio of 1Gb/s CBR.

properly designed control scheme may overwhelm the network

with additional –control– load, but how much overhead will

S-CORE create? First, S-CORE uses a token, which is ex-

changed between VMs and consists of a 32-bit ID and an 8-

bit communication level for each VM to facilitate and control

synchronous VM migration. The size of the token is therefore

proportional to the total number of VMs in the DC. A typical

production DC has 100,000-500,000 servers, in which case the

token size will merely be between 500KB - 2.5MB.

Migration of memory state is an overhead too (as actual

file system stays in the NFS server). During the memory

migration, in particular the iterative pre-copy stage [26], the

hypervisor copies all memory pages from source to destina-

tion. If some memory pages change (become “dirty”) during

this process, they will be re-copied. Therefore, the actual

amount of data being copied over the network is largely

dictated by the page dirty rate since higher page dirty rates

result in more data being transferred over the network. Fig. 4a

shows the PDF of the number of migrated bytes for each VM

migration captured in our experiments. The spread appears flat

and wide due to the highly varying memory dirty rate at the

time when a VM is being migrated. However, with minimal

installation of a ubuntu 10.4 VM image and a few lightweight

test services running inside, e.g., a HTTP server and a SSH

server, the VM memory size to migrate are all below 150MB.

The mean and standard deviation of migrated bytes are 127MB

and 11MB respectively. However, given the link capacity in

today’s Cloud DC networks, this additional control load is

negligible (1-second’s worth of transmission time over a 1

Gb/s link). Even a typical highly loaded commercial web

server has about 800MB memory usage [26], which is still

a completely affordable network overhead for an infrequent

migration schedule in line with our token policy. In addition,

the network overhead of performing a one-off or infrequent

migration for such a service may result in a lower overall

communication cost in the long term, which is beneficial to

DC operators.

F. Impact of Link Load

Sometimes, transient traffic bursts may lead to busier links.

Will migration over busier links worsen the machine down-

time? To answer this question, we set up an experiment in

which two servers, i.e., dom0, generated a constant bit rate

UDP stream as cross-traffic while migrating a VM from one to

the other. We then captured the migrated packets with tcpdump

to determine the total migration time by comparing the time

difference between the first and the last packets received. We

determine the downtime of a VM by probing the migrating

VM with high precision ping (fping) with ping interval set to

1ms.

Fig. 4b and Fig. 4c illustrate the distribution of VM migra-

tion time and down-time, respectively, for the migrated bytes

shown in Fig. 4a under varying background traffic on their

local links. As depicted from Fig. 4b, the mean total migration

time increases from 2.94s for no background traffic to 4.29s

with 100Mb/s of background traffic. With a background traffic

load between 100Mb/s and 1Gb/s, migration time increases

sub-linearly from 4.29s to 9.34s. Migration time shows a

larger spread for highly utilized links (≥70% of link capacity

utilized) due to transferring the large spread of migrated

memory size, as shown in Fig. 4a over the limited amount

of available link capacity. In particular, TCP’s congestion

control may be triggered in some cases, causing a long tail

in migration completion time.

Most importantly, in the DC environment, the server down

time is more often measured by the period of time that the

VM is unable to service user requests. This happens in the

stop-and-copy stage [26] of the live migration process where

a VM on a server is suspended, and its CPU state and any

remaining inconsistent memory pages are then transferred

to another server. As shown in Fig. 4c, down-time is an

order of magnitude smaller than the migration time and only

increases mildly from 16.38ms to 32.63ms with increased

background traffic on the link. This implies that while higher

link utilization does have some impact on VM down-time, this

does not cause significant service disruption as the amount of

data transferred during this stage is often minimal and can be

finished quickly over the network (most data being migrated

in the previous pre-copy stage [26]).

V. RELATED WORK

VM live migration [26] is typically employed to improve

server-side performance in terms of physical resources and

power consumption [5]. Consolidation concerns the grouping



8

of VMs on servers via migration, often in order to reduce

power usage [6] [27] or even to limit thermal dissipation in the

DC [28]. A network-aware variation of this is VMFlow [25],

which consolidates VMs to reduce the number of network

switches that must be powered on, while satisfying greater

network demands than consolidation focusing solely on server-

side metrics.

While the above studies have mainly addressed server-side

performance issues, there are several studies that, similar to

our own, attempt to specifically target the problem of network

performance-based migration [4][11][10][29][12][13]. Works

on initial VM placement attempt to minimize the overall DC

network cost matrix [4] or combine requirements placed on

multiple resources into a constraint problem [10]. However, as

they address initial placement, they do not adequately tackle

the problem of VM migration in a running Cloud DC nor

do they take the current state or the variability of DC traffic

dynamics into consideration.

VI. CONCLUSION

In this paper, we have presented the software design and

implementation of S-CORE, a scalable VM live migration

scheme to dynamically reduce the network-wide communica-

tion cost of Cloud Data Center topologies. Through distributed

VM migration, S-CORE alleviates congestion from the core

layers of the Data Center, that can otherwise become the

bottleneck and the main factor of performance degradation of

the overall infrastructure. We have evaluated S-CORE under

four different prioritization policies and demonstrated that

we can achieve up to 87% communication cost reduction

compared to an approximate optimal approach with a very

limited number of VM migrations. We have provided a real

implementation of S-CORE for the Xen hypervisor that incurs

minimal memory, CPU, and network footprint under typical

DC workloads, while keeping the migration downtime very

low even in the presence of considerable cross-traffic.

Overall, we have argued that optimizing resource usage

in Cloud Data Centers through measurement-based, network-

aware VM migration is feasible over existing DC network

topologies, server configurations and hypervisor architectures,

and can prove a powerful mechanism for providers to signifi-

cantly increase the usable capacity of their infrastructures even

at the onset of highly varying traffic dynamics.

REFERENCES

[1] A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel, “The cost of a
cloud: research problems in data center networks,” SIGCOMM Comput.
Commun. Rev., vol. 39, no. 1, pp. 68–73, Dec. 2008.

[2] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. A. Maltz, P. Patel, and S. Sengupta, “VL2: a scalable and flexible
data center network,” in Proc. ACM SIGCOMM’09, 2009, pp. 51–62.

[3] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data
center network architecture,” in Proc. ACM SIGCOMM’08, 2008, pp.
63–74.

[4] X. Meng, V. Pappas, and L. Zhang, “Improving the scalability of data
center networks with traffic-aware virtual machine placement,” in Proc.

IEEE INFOCOM’10, Mar. 2010, pp. 1–9.
[5] T. Wood, P. Shenoy, A. Venkataramani, and M. Yousif, “Black-box and

gray-box strategies for virtual machine migration,” in USENIX NSDI’07,
2007.

[6] A. Verma, P. Ahuja, and A. Neogi, “pMapper: power and migration
cost aware application placement in virtualized systems,” in Proc.

ACM/IFIP/USENIX Int. Conf. on Middleware, 2008, pp. 243–264.
[7] T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics

of data centers in the wild,” in Proc. ACM SIGCOMM Internet Mea-
surement Conf. (IMC’10), 2010, pp. 267–280.

[8] G. Wang and T. Ng, “The impact of virtualization on network perfor-
mance of Amazon EC2 data center,” in Proc. IEEE INFOCOM’10, Mar.
2010, pp. 1–9.

[9] A. Li, X. Yang, S. Kandula, and M. Zhang, “CloudCmp: comparing
public cloud providers,” in Proc. ACM SIGCOMM Internet Measurement

Conf. (IMC’10), 2010, pp. 1–14.
[10] D. Jayasinghe, C. Pu, T. Eilam, M. Steinder, I. Whally, and E. Snible,

“Improving performance and availability of services hosted on IaaS
clouds with structural constraint-aware virtual machine placement,” in
IEEE Int. Conf. on Services Computing (SCC’11), July 2011, pp. 72–79.

[11] V. Mann, A. Gupta, P. Dutta, A. Vishnoi, P. Bhattacharya, R. Poddar,
and A. Iyer, “Remedy: Network-aware steady state VM management for
data centers,” in Proc. IFIP TC 6 Networking Conf., ser. LNCS, 2012,
vol. 7289, pp. 190–204.

[12] O. Biran, A. Corradi, M. Fanelli, L. Foschini, A. Nus, D. Raz, and
E. Silvera, “A stable network-aware VM placement for cloud systems,”
Proc. IEEE/ACM Int. Symp. on Cluster, Cloud and Grid Computing

(CCGRID ’12), pp. 498–506, 2012.
[13] P. Bodı́k, I. Menache, M. Chowdhury, P. Mani, D. A. Maltz, and

I. Stoica, “Surviving failures in bandwidth-constrained datacenters,”
2012, pp. 431–442.

[14] R. Kohavi, R. M. Henne, and D. Sommerfield, “Practical guide to
controlled experiments on the web: listen to your customers not to the
hippo,” in Proceedings of the 13th ACM SIGKDD. ACM, 2007, pp.
959–967.

[15] C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wischik, and
M. Handley, “Improving datacenter performance and robustness with
multipath TCP,” in Proc. ACM SIGCOMM’11, 2011, pp. 266–277.

[16] “Xen hypervisor.” [Online]. Available: http://xen.org/
[17] Cisco, “Data center: Load balancing data center services,” 2004.
[18] F. P. Tso, K. Oikonomou, E. Kavvadia, G. Hamilton, and D. P.

Pezaros, “S-core: Scalable communication cost reduction in data
center environments,” School of Computing Science, University
of Glasgow, Tech. Rep. TR-2013-338, 2013. [Online]. Available:
http://www.dcs.gla.ac.uk/publications/PAPERS/9397/migration techreport.pdf

[19] “Xen management user interface.” [Online]. Available:
http://wiki.xen.org/wiki/XM/

[20] “Open vswitch.” [Online]. Available: http://openvswitch.org/
[21] “The ns-3 network simulator.” [Online]. Available:

http://www.nsnam.org/
[22] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken, “The

nature of data center traffic: measurements & analysis,” in Proc. ACM

SIGCOMM Internet Measurement Conference (IMC’09), 2009, pp. 202–
208.

[23] S. Kandula, J. Padhye, and P. Bahi, “Flyways to de-congest data center
networks.” Proc. ACM HotNets, 2009.

[24] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Ma-

chine Learning, 1st ed. Boston, MA, USA: Addison-Wesley Longman
Publishing Co., Inc., 1989.

[25] V. Mann, A. Kumar, P. Dutta, and S. Kalyanaraman, “VMFlow: Lever-
aging VM mobility to reduce network power costs in data centers,” in
Proc. IFIP TC 6 Networking Conf., ser. LNCS, 2011, vol. 6640, pp.
198–211.

[26] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt,
and A. Warfield, “Live migration of virtual machines,” ser. NSDI’05.
USENIX Association, 2005, pp. 273–286.

[27] M. Cardosa, M. Korupolu, and A. Singh, “Shares and utilities based
power consolidation in virtualized server environments,” in IFIP/IEEE

Int. Symp. on Integrated Network Management (IM’09), June 2009, pp.
327–334.

[28] J. Xu and J. Fortes, “Multi-objective virtual machine placement in
virtualized data center environments,” in IEEE/ACM GreenCom’10, Dec.
2010, pp. 179–188.

[29] A. Stage and T. Setzer, “Network-aware migration control and schedul-
ing of differentiated virtual machine workloads,” in Proc. ICSE

CLOUD’09, 2009, pp. 9–14.

All in-text references underlined in blue are linked to publications on ResearchGate, letting you access and read them immediately.

http://xen.org/
http://www.dcs.gla.ac.uk/publications/PAPERS/9397/migration_techreport.pdf
http://wiki.xen.org/wiki/XM/
http://openvswitch.org/
http://www.nsnam.org/

	Introduction
	System Definition and Description
	Design and Implementation
	Implementation Environment
	VM vs Hypervisor
	Flow Monitoring
	Token Passing
	Xen Wrapper
	Migration Decision
	Aggregate Throughput Calculation
	Location Identification
	Migration Location Identification


	Evaluation
	Simulation Setup
	Simulation Results
	Testbed Setup
	Module Evaluation
	Network Overhead
	Impact of Link Load

	Related Work
	Conclusion
	References

